E E-TECH ACADEMY

PRESENTS

CHEMISTRY MODULE

NEETJEE FORUM

1st Floor, New, White House, SG Barve Marg, near Anjuman Islam School, Buddha Colony, Kurla West, Kurla, Mumbai, Maharashtra 400070 Ph: 9833905914, http://www.etechacademy.com/

	INDEX	
SL.NO	TOPIC NAME	Page. No:
1.	ELECTROCHEMISTRY	1 – 17
2.	CO-ORDINATION COMPOUNDSH ACADEMY	18 – 38
3.	d & f BLOCK ELEMENTS	39 – 51

ELECTROCHEMISTRY

ELECTROCHEMISTRY

	LEVEL-1		1) 1.061 x 10 ⁻⁴ S cm ² mol ⁻¹			
1.	Strong electrolytes are those which :		2) 1.061 S cm ² mol ⁻¹			
	1) dissolve in water		3) 10.61 S cm ² mol ⁻¹			
	2) does not conduct electricity		4) 106.1 Scm ² mol ⁻¹			
	3) dissociate into ions even at high concentration	8.	Which statement is not correct:			
	4) dissociate into ions at high dilution		1) Conductance of an electrolytic solution			
2.	Solid sodium chloride does not conduct		increases with dilution			
	electricity due to the absence of :		2) Conductance of an electrolytic solution			
	1) free NaCl 2) free ions		decreases with dilution			
	3) free molecules 4) free atoms of Na and Cl		3) Specific conductance of an electrolytic			
3.	Electrolytic conduction is due to the movement		solution decreases with dilution			
	of		4) Equivalent conductance of an electrolytic			
	1) molecules 2) atoms		solution increases with dilution.			
	3) ions 4) electrons	9.	The resistance of 0.01 N solution of an			
4.	Which of the following solutions of KCl has		electrolyte was found to be 210 ohm at 298 K			
	the lowest value of equivalent conductance?	-	using a conductivity cell of cell constant			
	1) 1 M 2) 0.1 M		0.66 cm ⁻¹ . The equivalent conductance of			
	3) 0.01 M 4) 0.001 M		solution is:			
5.	If the specific resistance of a solution of	CA	1) 314.28 mho $cm^2 eq^{-1}$			
	concentration C geq L^{-1} . Then its equivalent		2) 3.14 mho cm ² eq ⁻¹			
	conductance is:		3) 314.28 mho ⁻¹ cm ² eq ⁻¹			
	1) 100R/C 2) RC/1000		4) 3.14 mho ⁻¹ cm ² eq ⁻¹			
	3) 1000/RC 4) C/1000R	10.	Electrolytic conduction differs from metallic			
6.	The specific conductance's in ohm ⁻¹ cm ⁻¹ of four		conduction from the fact that in the former.			
	electrolytes P, Q, R and S are given in brackets:		1) The resistance increases with increasing			
	P (5.0 × 10 ⁻⁵) Q (7.0 × 10 ⁻⁸) R (1.0 × 10 ⁻¹⁰)		temperature			
	S (9.2 \times 10 ⁻³) The one that offers highest		2) The resistance decreases with increasing			
	resistance to the passage of electric current is		temperature			
	1) P 2) S 3) R 4) Q		3) The resistance remains constant with			
7.	The specific conductance of a salt of 0.01 M		increasing temperature			
	concentration is 1.061 x 10 ⁻⁴ S cm ⁻¹ . Molar		4) The resistance is independent of the length of			
	conductance of the same solution will be :		the conductor			

1

ELECTROCHEMISTRY

- 11. The specific conductance of a 0.01 M solution of KCl is 0.0014 ohm⁻¹ cm⁻¹ at 25° C. Its equivalent conductance (cm2 ohm⁻¹ eq⁻¹) is :1) 140
 2) 14
 3) 1.4
 4) 0.14
- 12. Which one of the following is wrong:
 Specific conductance increases on dilution.
 Specific conductance decreases on dilution.
 Equivalent conductance increases on dilution.
 Molar conductance increases on dilution.
- 13. At infinite dilution, the equivalent conductance's of CH₃COONa, HCl and CH₃COOH are 91, 426 and 391 mho cm² eq⁻¹ respectively at 25°C. The eq. conductance of NaCl at infinite dilution will be:

1) 126 2) 209 3) 391 4) 908

14. For HCl solution at 25 °C, equivalent conductance at infinite dilution is 425 ohm⁻¹ cm² eq⁻¹. The specific conductance of a solution of HCl is 3.825 ohm-1 cm⁻¹. If the degree of dissociation is 90%, the normality of the solution is:

1) 0.90 N 2) 1.0 N 3) 10 N 4) 1.2 N

15. The molar conductivities Λ^{0}_{NaOAc} and Λ^{0}_{HC1} at infinite dilution in water at 25°C are 91.0 and 426.2Scm² mol⁻¹ respectively. To calculate Λ^{0}_{HOAc} the additional value required is :

1) Λ^0 NaCl 2) Λ^0 H₂O

3) Λ^0 KCl 4) Λ^0 NaOH

16. The molar conductance of AgNO₃, AgCl and NaCl at infinite dilution are 116.5, 121.6 and 110.3 Scm²mol⁻¹ respectively. the molar conductance of NaNO₃ is :

1) 111.4 S cm² mol⁻¹ 2) 105.2 S cm² mol⁻¹

3) 130.6Scm²mol⁻¹ 4) 150.2Scm²mol⁻¹

17. The conductivity of a saturated solution of $BaSO_4$ is 3.06×10^{-6} ohm⁻¹ cm and its molar conductance is 1.53 ohm⁻¹ cm² mol⁻¹. The K_{sp} of $BaSO_4$ will be

1) 4×10^{-12}	2) 2.5×10^{-9}
3) 2.5×10^{-13}	4) 4×10^{-6}

18. Kohlrausch's law states that at :-

1) Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

2) Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

3) Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

4) Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of electrolyte.

19. In the galvanic cell

 $Cu(s) | Cu^{2+}(1 M) | | Ag+ (1 M) | Ag(s)$

the electrons will travel in the external circuit:

1) from Ag to Cu 2) from Cu to Ag

- 3) electrons do not travel in the external circuit
- 4) in any direction

20. The direction of current in the Daniell cell when Zn and Cu electrodes are connected is :

- 1) from Cu to Zn in the cell
- 2) from Cu to Zn outside the cell
- 3) from Zn to Cu outside the cell
- 4) in any direction in the cell

- 21. The equation representing the process by which standard reduction potential of zinc can be defined is 1) Zn^{2+} (s) + 2e⁻ \rightarrow Zn (s) 2) Zn (g) \rightarrow Zn²⁺ (g) + 2e⁻ 3) $Zn^{2+}(g) + 2e^{-} \rightarrow Zn(s)$ 4) Zn^{2+} (aq.) + $2e^{-} \rightarrow Zn$ (s) 22. A standard hydrogen electrode has zero electrode potential because: 1) Hydrogen is easiest to oxidize. 2) This electrode potential is assumed to be zero. 3) Hydrogen atom has only one electron. 4) Hydrogen is the lightest element. 23. Which is not true for a standard hydrogen electrode? 1) The hydrogen ion concentration is 1 M. 2) Temperature is 25°C. 3) Pressure of hydrogen is 1 bar. 4) It contains a metallic conductor which does not adsorb hydrogen. 24. E° for the half cell Zn^{2+} | Zn is -0.76 V. E.M.F. of the cell $Zn | Zn^{2+}(1M) | | 2H^{+}(1M) | H_{2}(1 \text{ atm})$ is : 2) +0.76 V 1) -0.76 V 3) -0.38 V (4) + 0.38 V25. Cu(s) | Cu (1 M) | |Zn (1 M) | Zn(s) A cell represented above should have emf. 1) Positive 2) Negative 3) Zero 4) Cannot be predicted 26. Given electrode potentials : $Fe^{3+} + e \rightarrow Fe^{2+}$; E° = 0.771 V $I_2 + 2e \rightarrow 2I^-$; $E^\circ = 0.536 \text{ V}$ E°cell for the cell reaction $2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_2$ is -
- 1) $(2 \times 0.771 0.536) = 1.006 \text{ V}$ 2) $(0.771 - 0.5 \times 0.536) = 0.503$ V 3) 0.771 - 0.536 = 0.235 V 4) 0.536 - 0.771 = -0.235 V 27. Which of the following is not an anodic reaction:-1) Ag \rightarrow Ag⁺ +e- 2) Cu \rightarrow Cu²⁺ + 2e⁻ 3) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ 4) $4OH^{-} \rightarrow 2H_2O + O_2 + 4e^{-}$ 28. Which of the following statements is correct:-1) Oxidation occurs at anode in both galvanic and electrolytic cell. 2) Reduction occurs at anode in both galvanic and electrolytic cell 3) Reduction occurs at anode in electrolytic cell whereas oxidation occurs at cathode in galvanic cell 4) Oxidation occurs at anode in electrolytic cell whereas reduction occurs at anode in a galvanic cell 29. Other things being equal, the life of a Daniell cell may be increased by :-1) Keeping low temperature 2) Using large copper electrode 3) Decreasing concentration of copper ions 4) Using large zinc electrodes 30. Zn can not displace following ions from their aqueous solution:-1) Ag⁺ 2) Cu^{2+} 3) Fe^{2+} 4) Na⁺ 31. The standard reduction potentials at 25 °C for the following half reactions are given against each :-

 Zn^{2+} (aq) + 2e⁻ \rightarrow Zn(s), -0.762 V Cr^{3+} (aq) + $3e^{-} \rightarrow Cr(s)$, -0.740 V $2H^+ + 2e^- \rightarrow H_2$ (g), 0.00 V $Fe^{3+} + 2e^{-} \rightarrow Fe^{2+}, 0.77 V$

NE	ET	ELECTROCHEMISTRY			
	Which is the strongest reducing agent?	35. The standard reduction potential at 25 °C of			
	1) Zn 2) Cr 3) H_2 (g) 4) Fe^{2+} (aq)	Li ⁺ / Li, Ba ²⁺ / Ba, Na ⁺ / Na and Mg ²⁺ / M			
32.	Using the standard electrode potential values	are -3.05 V, -2.73 V, -2.71 V and -2.37 V			
	given below, decide which of the statements, I,	respectively. Which one of the following is th			
	II, III and IV are correct.	strongest oxidizing agent?			
	Choose the right answer from (1), (2), (3) and (4).	1) Na ⁺ 2) Li ⁺ 3) Ba ²⁺ 4) Mg ²⁺			
	$Fe^{2+} + 2e^{-} \rightleftharpoons Fe$; $E^{\circ} = -0.44 V$	36. A gas X at 1 atm is bubbled through a solutio			
	$Cu^{2+} + 2e^{-} \rightleftharpoons Cu$; $E^{\circ} = +0.34 V$	containing a mixture of 1 M Y ⁻ and 1 M Z ⁻ a			
	$Ag_+ + e^- \rightleftharpoons Ag$; $E^\circ = +0.80 V$	25°C. If the reduction potential of $Z > Y > Z$			
	I. Copper can displace iron from FeSO ₄ solution.	then:			
	II. Iron can displace copper from CuSO ₄	1) Y will oxidize X and not Z			
	solution.	2) Y will oxidize Z and not X			
	III. Silver can displace copper from $CuSO_4$	3) Y will oxidize both X and Z			
	solution.	4) Y will reduce both X and Z			
	IV. Iron can displace silver from AgNO3	37. The standard electrode potential of Zn, Ag an			
	solution.	Cu electrodes are -0.76 V, 0.80 V and 0.34 V			
	1) I and II 2) II and III	respectively, then:			
	3) II and IV 4) I and IV	1) Ag can oxidize Zn and Cu			
33.	The standard electrode potentials for the	2) Ag can reduce Zn^{2+} and Cu^{2+}			
	elements A, B and C are 0.68, -2.50 and 0.50 V	3) Zn can reduce Ag^+ and Cu^{2+}			
	respectively. The order of their reducing power	4) Cu can oxidize Zn and Ag			
	is:	38. Standard reduction potentials of four meta			
	1) $A > B > C$ 2) $A > C > B$	electrodes are			
	3) $C > B > A$ 4) $B > C > A$	A = - 0.250 V , B = - 0.140 V			
34.	The oxidation potential of Zn, Cu, Ag, H_2 and	C = -0.126 V, $D = -0.402 V$			
	Ni electrodes are 0.76 V, -0.34 V, -0.80 V, 0 V,	The metal that displaces A from aqueou			
	0.55 V respectively. Which of the following	solution of its compounds is :-			
	reaction will provide maximum voltage?	1) B 2) C 3) D 4)None of the above			
	1) $Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$	39. The following four colorless salt solutions ar			
	2) $Zn + 2Ag^+ \rightarrow 2Ag + Zn^{2+}$	placed in separate test tubes and a strip of Cu i			
	3) $H_2 + Cu^{2+} \rightarrow 2H^+ + Cu$	placed in each solution. Which solution finall			
	4) $H_2 + Ni^{2+} \rightarrow 2H^+ + Ni$	turns blue:			
		1) $Zn(NO_3)_2$ 2) $Mg(NO_3)_2$			
		3) KNO ₃ AgNO ₃			

NE	ET			ELECTROCHEMISTRY			
40.	Which of the follo	owing displacement does not	46.	Consider the reaction			
	occur:			$Cl_2(g) + 2Br^-(aq) \rightarrow 2Cl^-(aq) + Br_2(l)$			
	1) $Zn + 2H^+ \rightarrow Zn^2$	$^{+}$ + H ₂ \uparrow		The emf of the cell when $[Cl^-] = [Br^-] = 0.01 \text{ M}$			
	2) Fe + 2Ag ⁺ \rightarrow Fe ²	$^{+}$ + Ag \downarrow		and Cl2 gas at 0.25 atm pressure will be (E° for			
	3) Cu + Fe ²⁺ \rightarrow Cu ²⁺	+ Fe↓		the above reaction is $= 0.29$ V)			
	4) $Zn + Pb^{2+} \rightarrow Zn^{2+}$	+ Pb↓		1) 0.54 V 2) 0.272 V			
41.	On the basis of t	he following E° values, the		3) 0.29 V 4) -0.29 V			
	strongest oxidizing	g agent is :-	47.	The standard emf for the cell reaction			
	$[Fe(CN)_6]^4 \rightarrow [Fe(CN)_6]^{3-} + e^{-1}; E^\circ = -0.35 V$			$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu \text{ is } 1.10 \text{ V at } 25 ^{\circ}\text{C}.$			
	$Fe^{2+} \rightarrow Fe^{3+} + e^{-1}$; $E^{\circ} = -0.77 V$			The emf for the cell reaction when 0.1 M Cu ²			
	1) Fe ³⁺	2) [Fe(CN)6] ³⁻		and 0.1 M Zn^{2+} solution are used at 25 °C is :			
	3) [Fe(CN)6] ⁴⁻	4) Fe ²⁺		1) 1.10 V 2) 0.110 V			
42.	$E^{\circ}(Ni^{2+}/Ni) = -0.2$	$5 \text{ V E}^{\circ} (\text{Au}^{3+} / \text{Au}) = 1.50 \text{ V}$		3) -1.10 V 4) -0.110 V			
	The emf of the vol	taic cell	48.	E° for F^{2+} $2e^{-} \rightarrow 2F^{-}$ is 2.8 V,			
	Ni Ni ²⁺ (1.0 M) Au ³ + (1.0 M) Au is :			E° for $\frac{1}{2} F_2 + e^- \rightarrow F^-$ is?			
	1) 1.2 V 2) -1.75 V	7 3) 1.75 V 4) 4.0 V	-0	1) 2.8 V 2) 1.4 V 3) -2.8 V 4) -1.4 V			
43.	The emf of the cell		49.	How much will the potential of Mg Mg ²			
	T1 (s) T1 ⁺ (0.0001	M) Cu ²⁺ (0.01M) Cu(s) is		change if the solution of Mg ²⁺ is diluted 10			
	0.83 V			times			
	The emf of this cel	l will be increased by :-		1) increases by 0.03 V 2) decreases by 0.03 V			
	1) Increasing the co	oncentration of Cu ⁺² ions	101	3) increases by 0.059 V 4) decreases by 0.059 V			
	2) Decreasing the o	concentration of T1+	50.	How much will the potential of a hydroger			
	3) Increasing the co	oncentration of both		electrode change when its solution initially at			
	4) 1 & 2 both			pH = 0 is neutralised to $pH = 7$?			
44.	Which of the follo	wing represents the electrode		1) increases by 0.059 V			
	potential of silver	electrode dipped into 0.1 M		2) decreases by 0.059 V			
	AgNO ₃ solution at	25° C?		3) increases by 0.41 V 4) decreases by 0.41 V			
	1) E°red	2) (E°red + 0.059)	51.	Which of the following will increase the			
	3) (E° ox - 0.059)	4) (E°red - 0.059)		voltage of the cell with following cell reaction			
45.	The electrode pote	ential of a hydrogen electrode		$\operatorname{Sn}(s) + 2\operatorname{Ag}^+(\operatorname{aq}) \to \operatorname{Sn}^{+2}(\operatorname{aq}) + 2\operatorname{Ag}(s)$			
	dipped in solution	of pH = 1 is		1) Increase in the size of silver rod			
	1) 0.059 V	2) 0.00 V		2) Increase in the concentration of Sn ⁺² ions			
	3) -0.059 V	4) 0.59 V		3) Increase in the concentration of Ag ⁺ ions			
				4) Decrease in the concentration of Ag ⁺ ions			

NE	ET				ELECTROCHEMISTRY
52.	E° for the reaction	$rac{1}{1} Fe + Zn^{2+} \rightarrow Zn + Fe^{2+} is -$	59.	The equilibrium co	nstant (in approx) of the cell
	0.35 V. The given	cell reaction is :		reaction:	
	1) spontaneous	2) non-spontaneous		Cu(s) + 2Ag ⁺ (aq.)	\rightleftharpoons Cu ⁺² (aq.) + 2Ag(s)
	3) in equilibrium	4) can't say anything.		if E°cell = 0.465 V	at 298 K is :-
53.	For a reaction - A	$A(s) + 2B^+ / A^{2+} + 2B(s) KC$		1) 2.0×10^{10}	2) 3.16 × 10 ¹²
	has been found to	be 1012. The E°cell is:		3) 3.16 × 10 ¹⁵	4) 4×10^{10}
	1) 0.354 V 2) 0.70	8 V 3) 0.0098 V 4) 1.36 V	60.	The emf of the c	ell in which the following
54.	The standard elect	rode potential (E°) for 0OCl ⁻		reaction	
	/Cl ⁻ and Cl ⁻ 1/2 C	l_2 respectively are 0.94 V and		$Zn(s) + Ni^{2+} (C = 0)$	$(1) \rightleftharpoons Zn^{2+} (C = 1.0) + Ni(s)$
	-1.36 V. The E° va	lue of OCl ⁻ 1/2 Cl ₂ will be :		occurs, is found to	be 0.5105 V at 298 K. The
	1) -2.20 V	2) -0.42 V		standard e.m.f. of	the cell is :-
	3) 0.52 V	4) 1.04 V		1) -0.5105 V	2) 0.5400 V
55.	The hydrogen elec	trode is dipped in a solution		3) 0.4810 V	4) 0.5696 V
	of pH = 3 at 25 $^{\circ}$	C. The electrode potential of	61.	If $E^{0}_{Fe+2/Fe} = -0.44$	41V and $E^{0}_{Fe+3/Fe}+_{2} = 0.771V$
	the half-cell would	l be:		the standard EMF	of the reaction
	1) 0.177 V	2) - 0.177 V		$Fe + 2Fe^{+3} \rightleftharpoons 3Fe^{-3}$	⁺² will be :
	3) 0.087 V	4) 0.059 V		1) 0.330 V	2) 1.653 V
56.	What is the potent	tial of the cell containing two	_	3) 1.212 V	4) 0.111 V
	hydrogen electrode	es as represented below Pt;	62.	When an electric	current is passed through
	H_2 (g) H^+ (10 ⁻⁸)M	$ H^{+} (0.001 M) H_{2} (g) IPt ;$		acidified water, 11	2 mL of hydrogen gas at STP
	1) - 0.295 V	2) - 0.0591 V	100	collects at the cat	hode in 965 s. The current
	3) 0.295 V	4) 0.0591 V	:101	passed in ampere is	8:
57.	Consider the cell	$Cu Cu^{+2} Ag^{+} Ag$. If the		1) 1.0 2) 0.5	3) 0.1 4) 2.0
	concentration of	Cu ⁺² and Ag ⁺ ions becomes	63.	Two electrolytic c	ells one containing acidified
	ten times, then the	emf of the cell will :-		ferrous chloride a	and another acidified ferric
	1) Becomes 10 time	es		chloride are conne	ected in series. The ratio of
	2) Remains same			iron deposited at	cathodes in the two cells
	3) Increases by 0.02	295 V		when electricity is	passed through the cells will
	4) Decreases by 0.0	295 V		be :	
58.	The emf of the cell			1) 3 :1 2) 2 : 1	3) 1 : 1 4) 3 : 2
	Ni Ni ²⁺ (1.0 M)	Au ⁺³ (0.1M) Au	64.	A current of 9.65	5 A flowing for 10 minute
	$[\mathbf{E}^{\circ} \text{ for } \mathbf{Ni}^{+2} \mathbf{Ni} = \cdot$	0.25V, E° for		deposits 3.0 g of	f a metal. The equivalent
	$Au^{+3} Au = 1.50 V$] is given as:-		weight of the meta	l is:
	1) 1.25 V	2) - 1.75 V		1) 10 2) 30	3) 50 4) 96.5
	3) 1.78 V	4) 1.73 V			

NE	ET		ELECTROCHEMISTRY
65.	How many coulombs of electric charge are	72.	One Faraday of electricity will liberate one
	required for the oxidation of 1 mol of H_2O to		mole of the metal from the solution of
	O ₂ ?		1) Auric chloride 2) Silver nitrate
	1) 9.65×10^4 C 2) 4.825×10^5 C		3) Calcium chloride 4) Copper sulphate
	3) 1.93×10^5 C 4) 1.93×10^4 C	73.	When 96500 C of electricity are passed through
66.	On passing 10800 C through electrolytic		barium chloride solution, the amount of barium
	solution, 2.977 g of metal (atomic mass 106.4		deposited will be :-
	g/ mol) was deposited, the charge on the metal		1) 0.5 mol 2) 1.0 mol
	cation is –		3) 1.5 mol 4) 2.0 mol
	1) +4 2) +3 3) +2 4) +1	74.	A factory produces 40 kg of calcium in two
67.	On passing electricity through dilute H_2SO_4		hours by electrolysis. How much aluminium
	solution the amount of substance liberated at		can be produced by the same current in two
	the cathode and anode are in the ratio:		hours :-
	1) 1 : 8 2) 8 : 1 3) 16 : 1 4) 1 : 16		1) 22 kg 2) 18 kg
68.	During electrolysis of fused calcium hydride,		3) 9 kg 4) 27 kg
	the hydrogen is produced at:	75.	What would be the ratio of moles of Ag, Cu,
	1) Cathode	>•	Fe that would be deposited by passage of same
	2) Anode		quantity of electricity through solutions of salts
	3) Hydrogen gas is not liberated at all		containing Ag ⁺ , Cu ⁺² , Fe ⁺³ :
	4) H ₂ produced reacts with oxygen to form water'		1) 1 : 1 : 1 2) 1 : $\frac{1}{-}$: $\frac{1}{-}$
69.	A silver cup is plated with silver by passing 965	0.000	
	A current for one second, the mass of Ag	101	3) $\frac{1}{2}:\frac{1}{2}:1$ 4) 1:2:3
	deposited is: (At. wt. of Ag = 107.87)	76	J 2
	1) 9.89 g. 2) 107.87 g.	/0.	1) An increase in pH
	3) 1.0787 g. 4) 100.2 g.		2) A decrease in pH
70.	When electricity is passed through a solution of		3) Fither decrease or increase in pH
	AlCl ₃ , 13.5g Al is deposited. The number of		4) None
	Faradays must be :-	77.	The passage of current liberates H_2 at cathode
	1) 5.0 2) 1.0		and Cl ₂ at anode. The solution is :-
	3) 1.5 4) 3.0		1) $CuSO_4$ (ag) 2) $CuCl_2$ (ag)
71.	A solution of sodium sulphate in water is		$3) \operatorname{NaCl}(aq.) \qquad 4) \operatorname{Water}$
	electrolyzed using inert electrodes. The product	78.	When lead accumulator is charged, it acts as:
	at the cathode and anode are respectively:		1) an electrolytic cell 2) a galvanic cell
	1) H_2 , SO_2 2) O_2 , H_2		3) a Daniel cell 4) none of the above
	3) O ₂ , Na 4) H ₂ ,O ₂		

- - - - ----

NE	NEET ELECTROCHEMISTRY										
79.	The	therm	odyn	amic	effici	ency	of ce	ll is	given		LEVEL-2
	by –									1.	The chemical reaction,
	1) Th	ey are	e mor	e effic	cient						$2AgCl(s) + H_2(g) \longrightarrow 2HCl(aq) + 2Ag(s)$
	2) Th	ey are	e free	from	pollut	ion					taking place in a galvanic cell is represented by
	3) Th	ey ru	n till r	reacta	nts ar	e activ	ve				the notation :
	4) Fu	el bur	med v	vith C) ₂						1) Pt(s) H ₂ (g), 1 bar 1 M KCl (aq) AgCl (s)
80.	When	n a lea	ad sto	orage	batter	ry is c	harge	ed it a	ct as:		Ag(s)
	1) a f	uel ce	11	2	2) a G	alvan	ic cell	l			2) $Pt(s) \mid H_{2}(\sigma) \mid 1$ har $\mid 1 M HCl(a\sigma) \mid 1 M \Delta \sigma^{+}$
	3) a e	lectro	olytic	cell 4	4) a co	oncent	tratio	n cell			$2 \int 1 (3) + 11 Z(3), 1 Dat + 1 Witter (ad) + 1 Witteg$
81.	Whic	h of	the f	ollow	ving s	taten	ent i	s fals	e for		(aq) Ag(s)
	Fuel	cells?									3) Pt (s) $H_2(g)$, 1 bar 1M $HCl(aq)$ $AgCl(s)$
	1) Th	ey are	e mor	e effic	cient						Ag (s)
	2) Th	ey are	e free	from	pollut	ion					4) Pt (s) H ₂ (g), 1 bar 1 M HCl (aq) Ag(s)
	3) Th	ey ru	n till r	reacta	nts ar	e activ	ve				AgCl(s)
	4) Fu	el bur	med v	vith C) ₂					2.	For the reduction of silver ions with copper
			LI	EVEL	1 KI	ΞY					metal, the standard cell potential was found to
1	2	3	4	5	6	7	8	9	10	> — •	be + 0.46 V at 25°C. The value of standard
3	2	3	1	3	3	3	2	1	2		Gibbs energy ΔG° will be (F = 96500 C mol ⁻¹)
11	12	13	14	15	16	17	18	19	20		1) – 89.0 kJ 2) – 89.0 J
1	1	1	3	1	2	4	2	2	2		3) – 44.5 kJ 4) – 98.0 kJ
21	22	23	24	25	26	27	28	29	30	3.	Assertion : Galvanised iron does not rust.
4	2	4	2	2	3	1	1	4	4	1014	Reason : Zinc has a more negative electrode
31	32	33	34	35	36	37	38	39	40		potential than iron.
1	3	4	2	4	1	3	3	4	3		1) If both assertion and reason are true and
41	42	43	44	45	46	47	48	49	50		reason is the correct explanation of assertion.
1	3	4	4	3	2	1	1	1	4		(2) If both assertion and reason are true but
51	52	53	54	55	56	57	58	59	60		reason is not the correct explanation of assertion.
3	2	1	3	2	3	3	4	3	2		3) If Assertion is true but reason is false.
61	62	63	64	65	66	67	68	69	70		4) If both assertion and reason are false.
3	1	4	3	3	1	1	2	3	3	4.	The products formed when an aqueous solution
71	72	73	74	75	76	77	78	79	80		of NaBr is electrolysed in a cell having inert
4	2	1	2	2	2	3	1	3	3		electrodes are :
81											1) Na and Br ₂ 2) Na and O_2
2											3) H ₂ , Br ₂ and NaOH 4) H ₂ and O ₂

NE	ET		ELECTROCHEMISTRY
5.	Assertion : For the Daniel cell Zn Zn^{2+}		1) If both assertion and reason are true and
	Cu^{2+} Cu with $E_{cell} = 1.1$ V, the application of		reason is the correct explanation of assertion.
	opposite potential greater than 1.1 V results into		2) If both assertion and reason are true but
	flow of electron from cathode to anode.		reason is not the correct explanation of assertion.
	Reason : Zn is deposited at anode and Cu is		3) If Assertion is true but reason is false.
	oxidised at cathode		4) If both assertion and reason are false.
	1) If both assertion and reason are true and	9.	The reduction potential at $pH = 14$ for the
	reason is the correct explanation of assertion.		Cu^{2+}/Cu couples is :
	2) If both assertion and reason are true but		(Given $E^{o}_{Cu^{2+}/Cu} = 0.34 \text{ V}$; $K_{sp}[Cu(OH)_2] = 1 \times$
	reason is not the correct explanation of assertion.		10 ⁻¹⁹)
	3) If Assertion is true but reason is false.		1) 0.34 V 2) – 0.34 V 3) 0.22 V 4) – 0.22 V
	4) If both assertion and reason are false.	10.	The minimum voltage required to electroyse
6.	A current of 96.5 A is passed for 18 min		alumina in the Hall-Heroult process is :
	between nickel electrodes in 500 mL solution of		(Given, ΔG_{f}^{0} (A1 ₂ O ₃) = - 1520 kJmol ⁻¹ ; ΔG_{f}^{0}
	2M Ni(NO ₃) ₂ . The molarity of solution after		$(CO_2) = -394 \text{k Imol}^{-1}$
	electrolysis would be :	-	(CC ₂) 574 Killor)
	1) 0.46 M 2) 2 M		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3) 0.625 M 4) 1.25 M	11	$3) 1.312 \sqrt{4} = 2.02 \sqrt{4}$ The pH of 0.5 L of 1.0 M NeCl after the
7.	Assertion : According to Kohlrausch law the	11.	electrolysis for 965 s using 5.0 Å current is:
	molar conductivity of a strong electrolyte at		1) 1 0 2) 12 7 3) 13 0 4) 1 30
	infinite dilution is sum of molar conductivities of	12	The notential of hydrogen electrode having a
	its ions.	12.	solution of $nH = 4$ at 25°C is:
	Reason : The current carried by cation and anion		1) -0.177 V 2) -0.236 V
	is always equal.		(2) + 0.177 V $(2) + 0.236 V$
	1) If both assertion and reason are true and	13.	Assertion : A reactions spontaneous if $E_{coll} =$
	reason is the correct explanation of assertion.	101	
	2) If both assertion and reason are true but		Parson : For $\mathbf{E}_{11} = \pm \mathbf{v} \in \Box \mathbf{G}$ is always we
	reason is not the correct explanation of assertion.		Reason : For $E_{Cell} = +vc$, $\Box G$ is always $-vc$.
	3) If Assertion is true but reason is false.		1) If both assertion and reason are true and
	4) If both assertion and reason are false.		reason is the correct explanation of assertion.
8.	Assertion : The cell potential of mercury cell is		2) If both assertion and reason are true but
	1.35 V, which remains constant.		reason is not the correct explanation of assertion.
	Reason : In mercury cell, the electrolyte is a		5) II Assertion is true but reason is false.4) ICheck exaction and the second secon
	paste of KOH and ZnO.		4) If both assertion and reason are false.

Reason : On increasing dilution, the degree of 14. The cell constant of a given cell is 0.47 cm^{-1} . ionisation of weak electrolyte increases and The resistance of a solution placed in this cell is molality of ions also increases. measured to be 31.6 ohm. The conductivity of 1) If both assertion and reason are true and the solution (in S cm^{-1} where S has usual reason is the correct explanation of assertion. meaning) is : 2) If both assertion and reason are true but 3) 0.015 4) 150 1) 0.15 2) 1.5 reason is not the correct explanation of assertion. 15. The standard reduction potentials at 298 K for 3) If Assertion is true but reason is false. the following half reactions are given against 4) If both assertion and reason are false. each **19.** Assertion : During electrolysis of CuSO₄(aq) $Zn^{2^+}(aq) + 2e = Zn(s); -0.762 V$ using copper electrodes, copper is dissolved at $Cr^{3+}(aq) + 3e \longrightarrow Cr(s); -0.740 V$ anode and deposited at cathode. $2H^+$ (ag) + 2e \longrightarrow H₂ (g) ;0.00 V Reason : Oxidation takes place at anode and Fe^{3+} (ag) + e = Fe^{2+} (ag) :0.770 V reduction at cathode. 1) If both assertion and reason are true and Which is the strongest reducing agent? reason is the correct explanation of assertion. 1) Zn (s) 2) Cr (s) 3) H₂ (g) 4) Fe³⁺ (aq) 2) If both assertion and reason are true but 16. A 1.0 M with respect to each of the metal reason is not the correct explanation of assertion. halides AX₃, BX₂, CX₃ and DX₂ is 3) If Assertion is true but reason is false. electrolysed using platinum electrodes. If 4) If both assertion and reason are false. ${\rm E^{\circ}}_{{\rm A}^{3+}/{\rm A}}=1.50V, {\rm E^{\circ}}_{{\rm B}^{2^{*}}/{\rm B}}=0.3V, {\rm E^{\circ}}_{{\rm C}^{3^{+}}/{\rm C}}=-0.74~V,$ 20. Calculate the emf of the cell in which of the $E^{\circ}_{D^{2^+}/D} = -2.37$ V. following reaction takes place The correct sequence in which the various $Ni(s) + 2Ag^+ (0.002M) \rightarrow Ni^{2+} (0.160 M) +$ metals are deposited at the cathode is -2Ag(s) (Give the $E_{cell}^0 = 1.05$ V) 1) A,B,C,D 2) A.B.C 1) 0.73 V 2) 0.91 V 3) 0.62 V 4) 0.34 V 3) D,C,B,A 4) C,B,A 21. The equivalent conductance of an aqueous 17. When Br₂ is treated with aqueous solutions of solution of 1.0283 \times 10⁻³ g equivalent acetic NaF, NaCl and Nal separately acid per litre is 48.15 ohm⁻¹ cm² equiv⁻¹ at 1) F₂, Cl₂ and I₂ are liberated 25°C. At infinite dilution value is 390.7 ohm $^{-1}$ 2) only F_2 and CI_2 are liberated cm² equive⁻¹. Calculate the degree of 3) only I_2 is liberated ionisation and ionisation constant of acetic 4) only Cl₂ is liberated acid. 18. Assertion : On increasing dilution, the specific 1) 0.1232, 1.78 × 10⁻⁵ 2) 0.223, 102 × 10⁻⁵ conductance keep on increasing.

NEET

NEET 22. The number of coulombs required to reduce 27. Consider the following E^0 values : 12.3 g of nitrobenzene to aniline is $E^{0}_{Fa^{3+}/Fa^{2+}} = + 0.77 \text{ V} \text{ ; } E^{0}_{Sn^{2+}/Sn} = -0.14 \text{ V}$ 1) 96500 C 2) 5790 C Under standard conditions, the cell potential 3) 95700C 4) 57900 C for the reaction given below is : 23. Assertion (A) : E_{cell} increase with increase in $Sn(s) + 2Fe^{3+}(aq) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$ concentration of Ag⁺ ions 1) 1.68 V 2) 1.40 V *3) 0.91 V 4) 0.63 V **Reason (R)** : E_{cell} has positive value. 28. The limiting molar conductivities Λ° for NaCl, 1) If both assertion and reason are true and KBr and KCl are 126, 152 and 150 S cm² mol⁻¹ reason is the correct explanation of assertion. respectively. The value of Λ° for NaBr is : 2) If both assertion and reason are true but reason is not the correct explanation of assertion. *1) 128 S cm² mol⁻¹ 2) 176 S cm² mol⁻¹ 3) If Assertion is true but reason is false. 3) 278 S cm² mol⁻¹ 4) 302 S cm² mol⁻¹ 4) If both assertion and reason are false. 29. The molar conductivities Λ^0_{NaOAc} and Λ^0_{HCI} at 24. Cell equation : infinite dilution in water at 25°C are 91.0 and $A + 2B^+ \longrightarrow A^{2+} + 2B$ 426.2 Scm²/mol respectively. To calculate $A^{2+} + 2e \longrightarrow A$ Λ^0_{HOAC} , the additional value required is : $E^{\circ} = +0.34$ V and $\log_{10} K = 15.6$ at 300 K for 1) $\Lambda_{H_2O}^0$ 2) Λ_{KCl}^0 3) Λ_{NaOH}^0 *4) Λ_{NaCl}^0 cell reactions 30. The equivalent conductance of NaCl at Find E° for $B^+ + e \longrightarrow B$ concentration C and at infinite dilution are Λ_{C} **Given** $\left[\frac{2.303RT}{nF} = 0.059\right]_{r=200K}$ and Λ_{∞} , respectively. The correct relationship 1) 0.80 2) 1.26 3) -0.54 4) +0.94between $\Lambda_{\mathbf{C}}$ and Λ_{∞} is given as : (where the 25. 0.1 mole, per litre solution present in constant B is positive) conductivity cell where electrode of 100 cm² 1) $\Lambda_{C} = \Lambda_{\infty} + (B)C$ 2) $\Lambda_{C} = \Lambda_{\infty} - (B)C$ area placed at 1 cm and resistance observe is 5 x *3) $\Lambda_{C} = \Lambda_{\infty} - (B) \sqrt{C} 4$ $\Lambda_{C} = \Lambda_{\infty} + (B) \sqrt{C}$ 10³ Ohm, what is molar conductivity of 31. The metal that cannot be obtained by solution? electrolysis of an aqueous solution of its salts 1) 5 x10² S cm² mole⁻¹ 2) 10⁴ S cm² mole⁻¹ 3) 200 S cm² mole⁻¹ 4) 0.02 S cm² mole⁻¹ is: *2) Ca 1) Ag 26. In following cell reaction 32. Given below are the half-cell reactions : $Mg(s)+2Ag^{+}(0.001M) \longrightarrow Mg^{2+}(0.20M)+2Ag(S)$ $Mn^{2+} + 2e^{-} \rightarrow Mn$; $E^{\circ} = -1.18 V$ Calculate E_{cell} for the reaction [$E^{\circ} = 3.17 \text{ V}$, $2(Mn^{3+} + e^{-} \rightarrow Mn^{2+})$; E^o = +1.51 V $\frac{2.30 \text{ RT}}{5} = 0.054$]

The E° for $3Mn^{2+} \rightarrow Mn + 2Mn^{3+}$ will be: *1) -2.69 V; the reaction will not occur

3) Cu

4) Cr

1) 2.63 V 2) 3.01 V 3) 3.33 V 4) 3.51 V

- 2) –2.69 V ; the reaction will occur
- 3) -0.33 V ; the reaction will not occur
- 4) -0.33 V ; the reaction will occur

	LEVEL-2 KEY								
1	2	3	4	5	6	7	8	9	10
3	1	1	3	1	2	3	2	4	2
11	12	13	14	15	16	17	18	19	20
3	2	1	3	1	2	3	1,4	2	2
21	22	23	24	25	26	27	28	29	30
1	4	2	1	4	2	3	1	4	3
31	32								
2	1								

LEVEL-3(PREVIOUS YEARQUESTIONS)

1. If $E_{Fe^{+2}/Fe}^0 = -0.441 V$ and $E_{Fe^{+3}/Fe^{+2}}^0 = -0.771 V$ the standard EMF of the reaction

 Fe + 2Fe⁺³ \rightarrow 3Fe⁺² will be
 (AIPMT 2006)

 1) 0.330 V
 2) 1.653 V

- 3) 1.212 V 4) 0.111 V
- 2. A hypothetical electrochemical cell is shown
 A I A⁺ (xM) | | B⁺ (yM) | B (AIPMT 2006)
 1) A⁺ + B → A + B⁺
 - 2) $A^+ + e^- \rightarrow A$, $B^+ + e^- \rightarrow B$
 - 3) A + B+ \rightarrow A⁺ + B
 - 4) The cell reaction cannot be predicted.
- 3. The equilibrium constant of the reaction:

 $Cu(s) + 2Ag^+ (aq.) \rightarrow Cu = (aq.) + 2Ag(s)$

 $E^0 = 0.46$ V at 298 K is:(AIPMT 2008)1) 2.0×10^{10} 2) 4.0×10^{10}

3) 4.0×10^{15} 4) 2.4×10^{10}

4. On the basis of the following E0 values, the strongest oxidizing agent is- (AIPMT 2008) [Fe(CN)₆]⁴⁻→ [Fe(CN)₆]³⁻ + e⁻¹; E⁰ = -0.35 V Fe²⁺ → Fe³⁺ + e⁻¹; E⁰ = -0.77 V

1) Fe^{3+} 2) $[Fe(CN)_6]^{3-}$ 3) $[Fe(CN)_6]^{4-}$ 4) Fe^{2+}

5. Kohlrausch's law states that at :-

Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte. (AIPMT 2008)

2) Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

3) Finite dilution, each ion makes definite contribution to equivalent conductance of an

NE	ET		ELECTROCHEMISTRY
	electrolyte whatever be the nature of the other	10.	Consider the following relations for emf of a
	ion of the electrolyte.		electrochemical cell :- (AIPMT 2010)
	4) Infinite dilution, each ion makes definite		(a) emf of cell =(Oxidation potential of anode) -
	contribution to equivalent conductance of an		(Reduction potential of cathode)
	electrolyte depending on the nature of the other		(b) emf of cell = (Oxidation potential of anode) +
	ion of electrolyte.		(Reduction potential of cathode)
6.	Given : (AIPMT 2009)		(c) emf of cell = (Reduction potential of anode) +
	(i) $Cu^{2+} + 2e^{-} \rightarrow Cu, E^{0} = 0.337 V$		(Reduction potential of cathode)
	(ii) $Cu^{2+} + e^- \rightarrow Cu^+, E^0 = 0.153 \text{ V}$		(d) emf of cell = (Oxidation potential of anode) -
	Electrode potential, E ⁰ for the reaction,		(Oxidation potential of cathode)
	$Cu+, e^- \rightarrow Cu$, will be-		Which of the above relations are correct:
	1) 0.38 V 2) 0.52 V 3) 0.90 V 4) 0.30 V		1) (a) and (b) 2) (c) and (d)
7.	The equivalent conductance of $\frac{M}{22}$ solution of a		3) (b) and (d) 4) (c) and (a)
	32	11.	Which of the following expressions correctly
	weak monobasic acid is 8.0 ohm cm ² eq ⁻¹ and at		represents the equivalent conductance at
	infinite dilution is 400 ohm cm ² eq ⁻¹ . The	_	infinite dilution of Al ₂ (SO ₄) ₃ . Given that $\Lambda^0_{Al^{3+}}$
	dissociation constant of this acid is:		and Λ^0 are the equivalent conductance at
	1) 1.25×10^{-4} 2) 1.25×10^{-3} (AIPMT 2009)		and $M_{SO_4^{2-}}$ are the equivalent conductance at
	3) 1.25×10^{-6} 4) 6.25×10^{-4}	_	infinite dilution of the respective ions:-
8.	Al ₂ O ₃ is reduced by electrolysis at low potential		1) $\Lambda^{0}_{Al^{3+}} + \Lambda^{0}_{SO_{4-}^{2-}}$ 2) $\left(\Lambda^{0}_{Al^{3+}} + \Lambda^{0}_{SO_{4-}^{2-}}\right) \times 6$
	and high current. If 4.0×10^4 A of current is		
	passed through molten Al ₂ O ₃ for 6 hours, what	3	b) $\frac{1}{2}\Lambda^{0}_{Al^{3+}} + \frac{1}{2}\Lambda^{0}_{SO_{4}^{2-}}$ 4) $2\Lambda^{0}_{Al^{3+}} + 3\Lambda^{0}_{SO_{4}^{2-}}$ (AIPMT 2010)
	mass of aluminium is produced? (Assume 100%	12.	For the reduction of silver ions with copper
	current efficiency, (At. mass of $Al = 27 \text{ g mol}^{-1}$)		metals, the standard cell potential was found to
	1) 1.3×10^4 g 2) 9.0×10^3 g(AIPMT 2009)		be + 0.46 V at 25° C. The value of standard
	3) 8.1×10^4 g 4) 2.4×10^5 g		Gibbs energy, ΔG^0 will be [F = 96500 C mol ⁻¹]
9.	An increase in equivalent conductance of a		1) -98.0 kJ 2) -89.0 kJ(AIPMT 2010)
	strong electrolyte with dilution is mainly due		3) -89.0 J 4) -44.5 kJ
	to:- (AIPMT 2010)	13.	Standard electrode potential of three metals X.
	1) Increase in number of ions.		Y and Z are -1.2 V. $+0.5$ V and -3.0 V
	2) Increase in ionic mobility of ions.		respectively. The reducing nower of these
	3)100% ionisation of electrolyte at normal		metals will be :- (AIPMT 2011)
	dilution.		1) $Y > 7 > X$
	4) Increase in both i.e. number of ions and ionic		2) Y > X > 7
	mobility of ions.		3) $7 > X > Y$ 4) $X > Y > 7$
12			

13 E- TECH ACADEMY KURLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914

ELECT	ROC	HEM	ISTR	Y
	noc			

Ν	Ε	E	Т
	-	_	-

14. The electrode potentials for	19. Limiting molar conductivity of NH4OH are
$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$ and	i.e $\lambda_m^0(NH_4OH)$ is equal to :- (AIPMT 2012)
$Cu^+(aq) + e^- \rightarrow Cu(s)$	1) λ_m^0 (NH ₄ OH) + λ_m^0 (NH ₄ Cl) - λ_m^0 (HCl)
are +0.15 V and + 0.50 V respectively. The	2) λ_m^0 (NH ₄ Cl) + λ_m^0 (NaOH) - λ_m^0 (NaCl)
value of $E_{Cu^{2+}/Cu}^0$ will be :- (AIPMT 2011)	3) λ_m^0 (NH ₄ Cl) + λ_m^0 (NaCl) - λ_m^0 (NaOH)
1) 0.500 V 2) 0.325 V 3) 0.650 V 4) 0.150 V	4) λ_m^0 (NaOH) + λ_m^0 (NaCl) - λ_m^0 (NH ₄ Cl)
15. Standard electrode potential for Sn^{4+}/Sn^{2+}	20. At 250C molar conductance of 0.1 molar
couple is +0.15 V and that for the Cr^{3+}/Cr	aqueous solution of ammonium hydroxide is
couples is -0.74 V. These two couples in their	9.54 ohm ⁻¹ cm ² mol ⁻¹ and at infinite dilution its
standard state are connected to make a cell.	molar conductance is 238 ohm ⁻¹ cm ² mol ⁻¹ . The
The cell potential will be:- (AIPMT 2011)	degree of ionization of ammonium hydroxide at
1) +1.19 V 2) +0.89 V 3) +0.18 V 4) +1.83 V	the same concentration and temperature is:
16. If the E_{Cell}^0 for a given reaction has a negative	1) 40.800 % (NEET 2013)
value, then which of the following gives the	2) 2.080%
correct relationship for the values of ΔG^0 and	3) 4.008% 4) 4.008%
K _{eq} ? (AIPMT 2011)	21. A hydrogen gas electrode is made by dipping
1) $\Delta G_0 > 0$; $K_{eq} > 1$ 2) $\Delta G_0 < 0$; $K_{eq} > 1$	platinum wire in a solution of HCl of pH = 10
3) $\Delta G_0 < 0$; $K_{eq} < 1$ 4) $\Delta G_0 > 0$; $K_{eq} < 1$	and by-passing hydrogen gas around the
17. A solution contains Fe^{2+} , Fe^{3+} and I^- ions. This	platinum wire at 1 atm pressure. The oxidation
solution was treated with iodine at 35°C. E ₀ for	potential of electrode would be ?
Fe ³⁺ / Fe ²⁺ is +0.77 V and E ⁰ for I ₂ / 2I ⁻ = 0.536	1) 1.18 V 2) 0.059 V (NEET 2013) 3) 0.59 V 4) 0.118 V
V. The favourable redox reaction is:-	21 A hutton cell used in watches function as
1) Fe ²⁺ will be oxidized to Fe ³⁺ (AIPMT 2011)	following
2) I_2 will be reduced to I	$Zn(s)+Ag_2O(s)+H_2O(l) \rightarrow 2Ag(s)+Zn^{2+}(aq) +$
3) There will be no redox reaction	20H ⁻ (aq)
4) I ^{$-$} will be oxidized to I ₂	If half-cell potentials are
18. Molar conductivities (Λ_m°) at infinite dilution	$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s); E^{\circ} = -0.76 V$
of NaCl, HCl and CH ₃ COONa are 126.4, 425.9	$Ag_2O(s) + H_2O(l) + 2e^2 \rightarrow 2Ag(s) + 2OH^2(a_0)$
and 91.0 S cm ² mol ⁻¹ respectively. Λ_m° for	$E^{\circ} = 0.24 \text{ V}$
CH ₃ COOH will be :- (AIPMT 2012)	$\frac{1}{1000} = 0.34 \text{ V}$ The cell notential will be: (NEET 2012)
1) 290.8 S cm ² mol ⁻¹ 2) 390.5 S cm ² mol ⁻¹	1) 1 24 37 2) 1 10 37 2) 0 42 37 4) 0 94 37
3) 425.5 S cm ² mol ⁻¹ 4) 180.5 S cm ² mol ⁻¹	

NE	ET	ELECTROCHEMISTRY
22.	When 0.1 mol MnO_4^{2-} is oxidised the quantity	28. If the E_{Cell}^0 for a given reaction has a negative
	of electricity required to completely oxidise	value, which of the following gives the correct
	MnO_4^{2-} to MnO_4^{-} is :- (AIPMT 2014)	relationships for the values of ΔG° and K_{eq} ?
	1) 96500 C 2) 2 × 96500 C	1) $\Delta G^{\circ} < 0$; $K_{eq} > 1$ (NEET 2016)
	3) 9650 C 4) 96.50 C	2) $\Delta G^{\circ} < 0$; K _{eq} < 1
23.	The weight of silver (at wt. = 108) displaced by	3) $\Delta G^{\circ} > 0$; $K_{eq} < 1$ 4) $\Delta G^{\circ} > 0$; $K_{eq} > 1$
	a quantity of electricity which displaces 5600	29. The number of electrons delivered at the
	mL of O ₂ at STP will be :- (AIPMT 2014)	cathode during electrolysis by a current of 1 A
	1) 5.4 g 2) 10.8 g	in 60 s is (charge on electron = 1.60×10^{-19} C)
	3) 54.0 g 4) 108.0 g	1) 3.75×10^{20} 2) 7.48×10^{23} (NEET 2016)
24.	A device that converts energy of combustion of	3) 6×10^{23} 4) 6×10^{20}
	fuels like hydrogen and methane, directly into	30. In the electrochemical cell:-
	electrical energy is known as:- (AIPMT 2015)	Zn ZnSO ₄ (0.01 M) CuSO ₄ (1.0 M) Cu,
	1) Electrolytic cell 2) Dynamo	the emf of this Daniel cell is Ei. When the
.	3) N1-Cd cell 4) Fuel Cell	concentration of ZnSO ₄ is changed to 1.0 M
25.	The pressure of H_2 required to make the	and that of CuSO ₄ changed to 0.01 M, the emf
	potential of H_2 -electrode zero in pure water at	changes to E ₂ . Which one of the relationships is
	$\frac{298 \text{ K IS :-}}{10.14 \text{ stm}} = 20 \ 10^{12} \text{ stm}$	correct between E_1 and E_2 ? (NEET 2017)
	1) 10^{-10} atm 2) 10^{-10} atm 3) 10^{-10} atm 4) 10^{-4} atm	(Given $\frac{RT}{R} = 0.059$) F
26	The molar conductivity of a $0.5 \text{ mol}/dm^3$	F
20.	solution of AgNO ₂ with electrolytic	1) $E_1 < E_2$ 2) $E_1 > E_2$
	solution of Agivo ₃ with cletholytic conductivity of 5 76 \times 10 ⁻³ S cm ⁻¹ at 208 K is:-	3) $E_2 = 0 \# E_1$ 4) $E_1 = E_2$
	(NEET 2016)	31. Consider the change in oxidation state of
	1) 0.086 S cm^2/mol	Bromine corresponding to different EMF
	2) 28 8 S cm ² /mol	values as shown in the diagram below:
	3) 2.88 S cm ² /mol	$BrO_{4}^{-} \xrightarrow{1.82 \text{ V}} BrO_{3}^{-} \xrightarrow{1.5 \text{ V}} HBrO$
	4) 11.52 S cm ² /mol	
27.	During the electrolysis of molten sodium	$\operatorname{Br} \underbrace{\operatorname{Ho}_{1.0652V}}_{1.0652V} \operatorname{Br}_{2} \underbrace{\operatorname{Ho}_{1.595V}}_{1.595V}$
	chloride, the time required to produce 0.10 mol	Then the species undergoing
	of chlorine gas using a current of 3 A is	disproportionation is: (NEET 2018)
	1) 220 minutes (NEET 2016)	1) BrO_{3}^{-} 2) BrO_{4}^{-}
	2) 330 minutes	3) Br ₂ 4) HBrO
	3) 55 minutes 4) 110 minutes	
	· · · · ·	

NEET	ELECTROCHEMISTRY
32. For a cell involving one electron $E_{Cell}^0 = 0.59$ V at	36. The number of Faradays (F) required to
298 K, the equilibrium constant for the cell	produce 20 g of calcium from molten CaCl ₂
reaction is :- (NEET 2019)	(Atomic mass of Ca = 4a g mol ⁻¹) is:
[Given that $\frac{2.303 RT}{2.303 RT} = 0.059 V at T = 298K]$	1) 2 2) 3 3) 4 4) 1
$\frac{[Given that}{F} = 0.059 \text{ v at } 1 = 290\text{K}$	37. On electrolysis of dil. sulphuric acid using
1) 1.0×10^2 2) 1.0×10^5	Platinum (Pt) electrode, the product obtained at
3) 1.0×10^{10} 4) 1.0×10^{30}	anode will be : (NEET 2020)
33. For the cell reaction	1) Hydrogen gas 2) Oxygen gas
$2\mathrm{Fe}^{3+}(\mathrm{aq}) + 2\mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2\mathrm{Fe}^{2+}(\mathrm{aq}) + \mathrm{I}_{2}(\mathrm{aq})$	$3) H_2S gas \qquad 4) SO_2 gas$
$E_{Cell}^0 = 0.24 \text{V} \text{ at } 298 \text{ K}.$	38. The number of Faradays(F) required to produce
The standard Gibbs energy (A tG ₀) of the cell	20 g of calcium from molten CaCl ₂ (Atomic
reaction is : (NEET 2019)	mass of Ca = 40 g mol ⁻¹) is: (NEET 2020)
[Given that Faraday constant $F = 96500 \text{ C mol}^{-1}$]	1) 1 2) 2 3) 3 4) 4
1) - 46.32 kJ mol ⁻¹ 2) - 23.16 kJ mol ⁻¹	39. The molar conductivity of 0.007 M acetic acid
3) 46.32 kJ mol ⁻¹ 4) 23.16 kJ mol ⁻¹	is 20 S cm^2 mol ⁻¹ . What is the dissociation
34. Following limiting molar conductivities are	constant of acetic acid? Choose the correct
given as	option. (NEET 2021)
$\lambda_m^0 (\mathrm{H}_2 \mathrm{SO}_4) = \mathrm{x} \ \mathrm{Scm}^2 \ \mathrm{mol}^{-1}$	$\Lambda^{0}_{\rm H^{+}} = 350 \ {\rm S} \ {\rm cm}^{2} \ {\rm mol}^{-1}$
λ_m^0 (K ₂ SO ₄)= y S cm ² mol ⁻¹	$\Lambda^{0}_{CH_{3}COO^{-}} = 50 \text{ S cm}^{2} \text{mol}^{-1}$
λ_m^0 (CH ₂ COOK) = z S cm ² mol ⁻¹	1) $1.75 \times 10^{-4} \text{ mol } \text{L}^{-1}$
λ_m^0 (in S cm ² mol ⁻¹) for CH ₃ COOH will be-	2) $2.50 \times 10^{-4} \text{ mol } \text{L}^{-1}$ 3) $1.75 \times 10^{-5} \text{ mol } \text{L}^{-1}$
1) x - y + 2 z 2) x + y - z (NEET 2019)	4) 2.50×10^{-5} mol L ⁻¹
3) x - y + z 4) $\frac{x - y}{2} + z$	40. At 298 K, the standard electrode potentials of
35. The standard electrode potential (E°) values of	$Cu^{2+} / Cu, Zn^{2+} / Zn, Fe^{2+} / Fe and Ag+ / Ag$
$A1^{3+} A1, Ag^+ Ag, K^+ K and Cr^{3+} Cr are -1.66$	are 0.34 V, -0.76 V, -0.44 V and 0.80 V,
V. 0.80V2.93 V and -0.74 V respectively. The	respectively.
correct decreasing order of reducing power of	On the basis of standard electrode potential,
the metal is : (NEET 2019)	predict which of the following reaction cannot
1) Ag > Cr > Al > K	occur? (NEET 2022)
2) K > Al > Cr > Ag	1) $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)$
3) K > Al > Ag > Cr	2) $CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)$
4) Al > K > Ag > Cr	3) $FeSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Fe(s)$
	4) $2CuSO_4(aq) + 2Ag(s) \rightarrow 2Cu(s) + Ag_2SO_4(aq)$

41. Given below are half-cell reactions: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$, $E_{Mn2+/MnO4-}^0 = -1.510V$ $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$, $E_{O2/H2O}^0 = +1.223 V$ (NEET 2022) Will the permanganate ion, MnO_4^- liberate O_2 from water in the presence of an acid? 1) Yes, because $E_{cell}^0 = +0.287 V$ 2) No, because $E_{cell}^0 = -0.287 V$

- 3) Yes, because $E_{cell}^{0} = + 2.733 V$
- 4) No, because $E_{cell}^{0} = -2.733 V$

42. Find the emf of the cell in which the following reaction takes place at 298 K

Ni(s) + $2Ag^+$ (0.001 M) \rightarrow Ni²⁺ (0.001 M) +

(NEET 2022)

$$\left(E_{Cell}^{0} = 10.5 \text{ V}, \frac{2.303 \text{RT}}{\text{F}} = 0.059 \text{ at } 298 \text{K}\right)$$
1) 1.0385 V 2) 1.385 V

3) 0.9615 V 4) 1.05 V

43. The conductivity of centimolar solution of KC1 at 25°C is 0.0210 ohm⁻¹ cm⁻¹ and the resistance of the cell containing the solution at 25°C is 60 ohm. The value of cell constant is –

1) 3.28 cm⁻¹ 2) 1.26 cm⁻¹ (NEET 2023)

3) 3.34 cm⁻¹ 4) 1.34 cm⁻¹

44. Given below are two statements: one is labelled as (NEET 2023)

Assertion A: In equation $\Delta_r G = -nFE_{cell}$, value of Δr_G depends on n.

Reasons R: E_{cell} is an intensive property and $\Delta_r G$ is an extensive property.

In the light of the above statements, choose the correct answer from the options given below:

1) Both A and R are true and R is NOT the

correct explanation of A. 2) A is true but R is false

3) A is false but R is true

4) Both A and R are true and R is the correct explanation of A.

45. Homoleptic complex from the following

(NEET 2023)

- 1) Diamminechloridonitrito-N-platinum (II)
- 2) Pentaamminecarbonatocobalt (III) chloride
- 3) Triamminetriaquachromium (III) chloride
- 4) Potassium trioxalatoaluminate (III)

			LI	EVEL	-3 KI				
1	2	3	4	5	6	7	8	9	10
3	2	2	1	1	2	4	1	4	2
11	12	13	14	15	16	17	18	19	20
4	4	2	3	3	2	4	3	3	3
21	22	23	24	25	26	27	28	29	30
3	3	1	2	2	3	2	3	4	1
31	32	33	34	35	36	37	38	39	40
2	3	1	2	4	4	2	1	3	4
41	42	43	44	45					
1	3	2	4	4					

- 1. Coordination number is maximum in
 - 1) $[Co(NH_3)_6]^{3+}$
 - 2) $[Co(C_2O_4)_3]^{3-1}$
 - 3) [CoCl₃(H₂O)₃]
 - 4) All have same coordination number
- 2. Which of the following compound can give 2 mole AgCl per mole of the compound with excess of AgNO₃?

 1) NiCl₂.6H₂O
 2) CuCl₂.4NH₃

 3)CO₃²⁻
 4) NH₃

- 3. Find the correct statement about the ligand given below
 - I. This is ethylenediamine tetraacetate ion
 - II. This is flexidentate ligand

III. This ligand forms optically active complex with Co^{3+}

IV. This ligand is used for estimation of hardness of water

1) I, II 2) II, III 3) I, II, III 4) I, II, III, IV

- 4. The number of secondary and primary valency of Pentaammine chloridcobalt (III) chloride is 1) 6, 2 2) 5, 2 3) 6, 3 4) 5, 3
- 5. What is the secondary valency of cobalt in the complex [Co(en)₂F₂]ClO₄?

1) 4 2) 5 3) 3 4) 6

6. In the complex [Pt(Py)₄] [PtCl₄], the oxidation number of Pt atom in former and later part of the compound are respectively

7. Coordination number of Cr is 6. A complex entity with $C_2O_4^{2-}$, end and superoxide as ligand is $[Cr(C_2O_4)_x(en)_y(O_2)_z]^+$. The ratio x : y : z is

1) 1 : 1 : 22) 1 : 1 : 13) 1 : 2 : 24) 2 : 1 : 1

8. In the complex, potassium pentacyanonitrosyl vanadate (0), the number of counter ions per molecule and the coordination number of central metal ion are respectively

1) 5, 5 2) 4, 6 3) 5, 6 4) 4, 4

In [Feη⁵ - C₅H₅)₂] the coordination number and oxidation state of iron are respectively

1) 10, +2 2) 6, +3 3) 4, 0 4) 4, +2

10. Select the correct statement

1) Flexidentate ligands can also be called ambidentate ligands

2) NO_2^{Θ} is a π -acid lignad

- 3) Ambidentate ligands are monodentate ligands
 4) [PtCl₄]⁻² is an outer orbital complex
- 11. What are the oxidation states of Ni in the complexes [Ni(dmg)₂] & Ni(CO)₄?
 1) +6, +4 2) +2, 0 3) +2, +4 4) +6, 0
- 12. Which is not an example of ambidentate ligands?

2) NO[⊕]

1) SCN $^{\Theta}$

NEET	Co – Ordination Compounds
3) CN^{Θ} 4) $\ddot{N}H_2CH_2CH_2\ddot{N}H_2$	precipitate the free chloride ions in 200 ml of
13. The two complexes PtCl ₄ . 2NH ₃ and PtCl ₄ 2KCl	0.01 M solution of the complex
do not give precipitate of AgCl when treated	1) 80 ml 2) 40 ml
with AgNO ₃ . They give zero and three moles of	3) 20 ml 4) 120 ml
ions respectively in solutions for one mole of	20. The effective atomic number of Fe in Fe(CO) ₅
complex. The structural formulae of both	is
complexes are	1) 34 2) 26
1) [PtCl ₂ (NH ₃)] Cl ₂ and K ₂ [PtCl ₆] respectively	3) 36 4) 54
2) $[PtCl_4(NH_3)_2]$ and $K_2[PtCl_2(NH_3)_2]$ respectively	21. What are the oxidation states of Ni in the
3) $[PtCl_4(NH_3)_2]$ and $K_2[Pt Cl_6]$ respectively	complexes [Ni(dmg) ₂] & Ni(CO) ₄ ?
4) [PtCl ₄].2NH ₃)] and [PtCl ₄].2KCl respectively	1) +6, +4 2) +2, 0
14. Which of the following can act as flexidentate	3) +2, +4 4) +6, 0
ligand?	22. π acid ligands is
1) dipy 2) dmg 3) gly 4) $edta^{4}$	1) CO 2) NO ₂
15. Oxidation number and effective atomic number	3) CO_3^{2-} 4) NH ₃
of central metal ion in ferrocene respectively is	23. The oxidation state of iron in Fe[η^5 - (C ₆ H ₅) ₂] is
1) +1, 35 2) +2, 35	1) + 1 $2) + 3$ $3) + 2$ $4) - 3$
3) +3, 36 4) +2, 36	24. Which of the following is a π -complex?
16. The coordination number and primary valence	1) $[Fe(\eta^5 - C_5H_5)_4]$ 2) $[CoCl_2(en)_2]SO_4$
of Cr in trisoxalato chromium (III) ion is	3) $[CuCl_4]^{2-}$ 4) Li(AlH ₄)
1) 3, 3 (2) 6, 3	25. Which of the following statement(s) is correct?
3) 6, 64) Unpredictable	1) Bond length of C-O in metal carbonyl is less
17. What is the secondary valency of the metal in	than in CO molecular state
the complex bis(ethane-1, 2-diammine)	2) Shape of $[PtCl_4]^{2-}$ is square planar
difluorido cobalt (III) perchlorate?	3) In square planar complexes, metal
1) 4 2) 2 3) 3 4) 6	assumes sp ³ hybridization
18. The coordination number and oxidation	4) The complex $[Co(NH_3)_3Cl_3]$ gives white ppt.
number of x in the compound [x(SO ₄)(NH ₃) ₅]Cl	with AgNO ₃ solution
will be	26. Arrange the following metal carbonyl in
1) 6 and 4 2) 10 and 3	increasing order of bond length of CO
3) 2 and 6 4) 6 and 3	Ni(CO) ₄ , $[Co(CO)_4]^-$, $[Fe(CO)_4]^2$
19. In complex MCl ₃ .5H ₂ O, the secondary valency	I II III
of metal is 6 and it has no molecule of water	1) III $<$ I $<$ II 2) I $<$ II $<$ III
present out of coordination sphere. Calculate	$(3) I < III < II \qquad 4) III < II < I$
the volume of 0.1 M AgNO ₃ solution needed to	

NE	ET						Co – Ordir	nation	Compounds	5
27.	The neutral binary	complexes formed by metal	34.	Which	n of th	ie fo	ollowing i	s an	example of	of
	and CO ligands are	collectively called		coordi	i nation i	isom	erism?			
	1) Heteroleptic carbo	onyls		1) [Co	(NH ₃) ₅ E	3r]SC	O_4 and [Co((NH ₃)	SO ₄]Br	
	2) Homoleptic carbo	onyls		2) [Co	(NH ₃) ₅ 1	NO_2	Cl_2 and $[Co$	o(NH₃) $_5$ ONO]Cl ₂	
	3) Polycarboxy com	plexes		3)[Co([NH ₃) ₆][Cr(C	$(N)_6$ and $[C]$	Cr(NH	(3) ₆ [Co(CN) ₆	5]
	4) Polynuclear comp	plexes		4) All (of these					
28.	Which of the follow	ving is a π - acid ligand?	35.	Total	numbe	er o	f geomet	rical	isomers fo	or
	1) ONO ⁻	2) CO		[Pt(NI	H3)(Br)([C1)(1])(NO ₂)(py)] is		
	3) NO ₂ ⁻	4) Cl ⁻		1) 6	2) 30	6	3) 10	4) 1	5	
29.	Ferrocene is		36.	The	coordi	natio	n compo	ound	[Co(NH ₃)	6]
	1) $Fe(\eta^6 - C_5H_5)_2$	2) $Fe(\eta^2 - C_5H_5)_2$		[Cr (C]	N)6] car	n exh	ibit			
	3) $Cr(\eta^5 - C_5H_5)_2$	4) Os ($\eta^5 - C_5 H_5$) ₂		1) Hyd	lrate iso	meris	sm			
30.	The total number	of π - bonds possible in		2) Ioni	isation is	some	erism			
	[Ni(CO)4] is			3) Coo	ordinatio	on isc	omerism			
	1) 4	2) 8		4) All (of these					
	3) 12	4) 6	37.	The	comp	lex	[M(CO))₅ (SC I	N)]Cl an	ıd
31.	Which water of the	following is π - acid ligand?		[Mn(C	CO)₅(NC	CS)](Cl are			
	1) CO	2) NO ⁺	_	1) Res	onating	form	S			
	3) $CH_2 = CH_2$	4) All of these		2) Linl	kage iso	mers				
32.	The solution of	which of the following		3) Co-0	ordinati	on is	omers			
	complexes will be n	ion-conducting?	100	4) Ioni	isation is	some	ers			
	CI NH ₃		38.	Which	n of	the	following	g sq	uare plana	ìr
				comple	exes w	ill b	e able to	show	geometric	al
	$\begin{array}{c c} \mathbf{NH}_{3} & \mathbf{V} \\ \mathbf{NH}_{3} \\ \mathbf{I} \\ \mathbf{CI} \\ \mathbf{NH}_{3} \end{array}$	NH ₃ NH ₃ 2) Cl		isomer	rism?					
	NH ₃	Cl NH,		1) MX	-4		2) MX ₃ Y	7		
	NH ₃ Cl	NH, CoCl		3) M(X	XX') ₂		4) M(YY	$)_2$		
	Cl ^{****} NH ₃	NH ₃ NH ₃	39.	The nu	umber o	of pos	ssible isom	er for	the comple	X
22	S) Ci	4) This		ion [C	Coen(Cl)	$_2Br_2$] is			
55.	$1) [E_{\alpha}(II, \alpha), 1^{3+}]$	of isomers are formed by		1) 2	2) 3		3) 4	4) 6		
	1) $[Fe(H_2O)_6]^2$		40.	Which	n is	an	example	of	coordinatio	n
	2) $[Pe(C_2O_4)_3]^2$ 3) $[Pt(N H) = PrC_1(N H)$			isomer	rism?					
	$\frac{1}{2} \int \left[\Gamma(1) \Pi_{3} \right] DICI(IN)$	0_2) 30_4		1) [Co	(NO ₂)(N	√H₃) <u></u> €	^{5]2+} , [Co(O	NO)(J	$(NH_3)_5]^{2+}$	
	$4) [CO(INI_3)_4(H_2O)]$			2) [Co	0(NO ₃)(1	$NH_3)$	₅]SO ₄ , [Co	(SO ₄)([NH ₃) ₅]NO ₃	
				3) [Cr($(H_2O)_6]$	Cl ₃ , [CrCl(H ₂ O)) ₅] Cl ₂	.H ₂ O	
_				4)[Co([NH ₃) ₆][[Cr(C	CN) ₆] & [C1	:(NH ₃)) ₆] [Co(CN)	6]

NE		Co – Ordination Compounds
41.	[Pt(NH ₃)(py)(CN)(NO ₂)] can have maximum	Which of the following set of compounds is
	number of geometrical isomers equal to	optically active?
	1) 2 2) 3 3) 4 4) 5	1) I & II only 2) I & III only
42.	The correct IUPAC name of	3) II & III only 4) I, II & III
	[Pt(en) ₂ Cl(ONO)] ⁺⁺ is	47. $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)4Br_2]Cl_2$ related
	1) Chlorodiethylenediaminenitritoplantinum (IV)	to each other as
	ion	1) Optical isomers 2) Linkage isomers
	2) Bis(ethylenediamine)chloronitro-o- platinum	3) Ionization isomers4) Co-ordination isomers
	(IV) ion	48. Identify the false statement
	3) Chloridobis(ethylenediamine) nitritoplatinum	1) The general electronic configuration of the
	(IV) ion	transition elements is (n-1) d ¹⁻¹⁰ ns ¹⁻²
	4) Chlorodiethylenediaminenitro-o- platinum(IV)	2) IUPAC name of $K_3[A1(C_2O_4)_3]$ is potassium
	ion	tris (oxalate) aluminate (III)
43.	Which of the following is/are correct regarding	3) Oxidation state of Na in sodium amalgam is
	this complex? [CrCl ₂ (OH ₂)(NH ₃) ₂] ⁻	+1
	a) It shows geometrical isomerism	4) BF ₃ is weakest Lewis acid amongst all BX ₃
	b) It shows optical isomerism	49. The complex having square planar geometry is
	c) It shows ionization isomerism	1) $[PtCl_4]^{2-}$ 2) $[CuCl_4]^{2-}$
	d) It shows hydrate isomerism	3) $[NiCl_4]^{2-}$ 4) All of these
	1) a only 2) Both a & b	50. The complex with maximum number of
	3) a, b & c 4) a, b, c & d	stereoisomers is
44.	Which type of isomerism is shown by cis	1) $[PtCl_3(C_2H_4)]^-$ 2) $[CuBr_2Cl_2]^{-2}$
	$[Co(en)_2Br_2]^+?$	3) $[Co(ox)_3]^{-3}$ 4) $[Cr(NH_3)_2(en)_2]^{+3}$
	1) Geometrical and co-ordination	51. Facial and meridional isomerism is exhibited by
	2) Optical	which of the following complex?
	3) Geometrical and linkage	1) MA_4B_2 2) MA_3B_3
	4) Both (1) & (2)	3) $M(AA)_3$ 4) $M(AB)_3$
45.	Which of the following type of complex can	52. In aqueous solution, complex
	exhibit facial and meridional isomers?	[Co(NH ₃) ₆][Cr(CN) ₆] exists as
	1) $[MA_4B_2]$ 2) $[MA_3B_3]$	1) $[Co(NH_3)_6]^{3+}$ and $[Cr(CN)e]^{3-}$
	3) $[MA_2B_2]$ 4) $[MABCDEF]$	2) $[Co(NH_3)_6]^{2+}$ and $[Cr(CN)e]^{2-}$
46.	$[\text{CoCl}_2(\text{en})_2]^+ \rightarrow (\text{I})$	3) $[Co(NH_3)_6]^{3-}$ and $[Cr(CN)e]^{3+}$
	$[Co(NH_3)Cl(en)_2]^{2+} \rightarrow (II)$	4) Does not dissociate
	$[\text{Co(NH}_3)_2\text{Cl}_2(\text{en})] + (\text{cis}) \rightarrow (\text{III})$	

. .

NE	ET		(Co – Ordination Compounds
53.	The IUPAC name of the following complex	60.	Which of the follow	ing is incorrect?
	$[(CO)_3Fe(CO)_3Fe(CO)_3]$ is		1) [NiCl ₄] ²⁻ is	
	1) Tricarbonyl iron (0) - μ -tricarbonyl iron (0)		2) dsp ² , paramagneti	ic, +2
	2) Non-carbonyl di iron (l)		3) sp ³ , diamagnetic,	0
	3) Hexacarbonyl iron (0) - μ - tricarbonyl iron (II)		4) sp ³ , paramagnetic	e, +2
	4) Tri- μ -carbonyl-bis (tricarbonyl iron (0)	61.	Highest magnetic m	noment is possessed by
54.	Which of the following complex can exhibit		1) $[Ni (H_2O)_6]^{2+}$	2) [Co (NH ₃) ₆]Cl ₃
	geometrical isomerism?		3) $[Zn (H_2O)_6]^{2+}$	4) Cis-platin
	1) $[Pt(ox)_2]^{-2}$ 2) $[Pt(gly)_2]$	62.	Which of the follo	owing complex has highest
	3) $[Pt(en)_2]^{+2}$ 4) All of these		magnetic moment?	
55.	The value of 'x' in the complex is		1) $[FeFe]^{3}$	2) $[Co (NH_3)_6]^3 +$
			3) $[Fe (CN)_6]^{4-}$	4) $[Ni (CN)_4]^{2-}$
	$(\mathrm{NH}_3)_4\mathrm{CO}$ OH $\mathrm{CO}(\mathrm{NH}_3)_4\mathrm{J}(\mathrm{SO}_4)_\mathrm{x}$	63.	The stability consta	ints of the complexes formed
	1) 5 2) 2 3) 6 4) 4		by a metal ion (M ²	⁺) with NH_3 , CN^- , H_2O and
56.	fac-mer isomerism is exhibited by		en are of the orde	r of 10^{11} , 10^{27} , 10^{15} and 10^{8}
	1) $[Co(NH_3)_3Cl_3]$ 2) $[Co(H_2O)_5Cl]Cl_2$	-•	respectively. Then	
	3) $[Cr(ox)_3]^{3-}$ (4) $[MnCl_4]^{2-}$		1) en is the strongest	ligand
57.	Which type of isomerism is shown by both		2) CN ⁻ is the stronge	est ligand
	complex A and B?		3) The strength of th	ne ligands has no relationship
	$[Cr(H_2O_6)]$ Cl ₃ and $[Cr(H_2O)_4]$ Cl ₂ . 2H ₂ O		with given values	
	A B E-TECH	64	4) All ligands are eq	ually strong
	1) Electronic isomerism 2) Hydrate isomerism	04.	il a multidentate il	gand is cyclic in nature and
	3) Ionisation isomerism 4) No isomerism		the stability of an	ourable steric factors, then
58.	What is the overall dissociation constant for		This is called	inplex is greatly enhanced.
	the $[M(NH_3)_4]^{2+}$ ion if p for this complex is		1) Ligand effect	2) Coordination effect
	2.1×10^{13} ?		 1) Ligand effect 3) Macrografic effect 	2) Co-ordination effect
	1) 2.1×10^{13} 2) 1.05×10^{13}	65	Which is a diamage	etic complex?
	3) 4.2×10^{13} 4) 4.7×10^{-14}	05.	1) [Fe(H ₂ O), 1^{3+}	2) $[Fe(H_{\bullet}\Omega)_{*}]^{2+}$
59.	dmg + NiCl ₂ + NH ₄ OH \rightarrow Complex (A) +		3) $[Fe(CN)_{2}]^{3}$	(4) $[Fe(CN)_{c}]^{4-}$
	$NH_4Cl + H_2O$. The hybridization, Magnetic	66.	What is the correct	t relationship of splitting of
	character and oxidation state of nickel in		tetrahedral and octa	ahedral system?
	complex (A) are respectively		1) $\Lambda = \Lambda$	$2) \wedge -\frac{4}{3} \wedge$
	1) dsp ² , diamagnetic,+2 2) dsp ² , paramagnetic,+2		$1) \Delta_t - \Delta_0$	$\Delta t = \frac{1}{9}\Delta_0$
	3) sp ³ , diamagnetic, 0 4) sp ³ , paramagnetic, $+2$		3) $\Delta_0 = 4\Delta_t$	4) $\Delta_{\rm t} = \frac{9}{4} \Delta_0$

NE	ET			Co – Ordination Compounds
67.	What is the wrong statement regarding		3) Greater is the b	pasic character of the ligand,
	stability of coordination compounds?		greater is the stabili	ty of the complex
	1) Greater the charge on central metal greater the		4) Chelate complex	es have low stability constant
	stability of the compound	73.	Which among the	e following complex is/are
	2) Chelation increases stability		outer orbital comp	lex?
	3) Conjugation on chelating decreases stability		$[Co(CN)_{6}]^{3}$	$[Fe(H_2O)_6]^{2+}$
	4) Stability is a thermodynamics concept		(I)	(II)
68.	Which of the following is not the property of		$[{\rm FeF}_6]^{3-1}$	[CoF ₆] ³⁻
	$Mn_2(CO)_{10}?$		(III)	(IV)
	1) 1 Mn-Mn bond		1) II, III, IV	2) II, III only
	2) 10 Mn-CO bond		3) I, IV only	4) II only
	3) It has two square pyramidal unit	74.	Which of the fol	lowing pairs contains only
	4) It is a liquid		tetrahedral comple	x?
69.	Irving-William's order for increasing stability		1) $[ZnCl_4]^{2-}$ & [MnO	$[2]_4]^{2-1}$
	of complexes formed by Co, Ni, Cu and Fe in		2) $[Zn(NH_3)_4]^2 + \&$	$[Cu(NH_3)_4]^{2+}$
	+2 oxidation state is	_	3) [MnCl ₄] ² - & [Ni($(CN)_{4}]^{2}$
	1) Co < Ni < Cu < Fe	—	4) $[ZnCl_4]^{2-}$ & [Ni(C	CN)] ²⁻
	2) Fe < Cu < Ni < Co	75.	Which among the	following complex will have
	3) Fe < Co < Ni < Cu		zero dipole momen	ıt?
	4) Ni < Co < Cu < Fe		(I) - $[Ni(CN)_4]^{2}$	(II) - cis-[Pt(NH ₃) ₂ Cl ₂]
70.	Which one species is square planar is geometry?		(III) - trans-[Pt(NH	$_{3})_{2}Cl_{2}]$
	1) $[Cu(NH_3)_4]^{2+}$ 2) $[NiCl_4]^{-2}$	AL MA	1) III only 2) I, III	3) I only 4) II, III
	3) $[Ni(CO)_4]$ 4) $[FeCl_6]^{4-1}$	76.	Which of the follo	owing pair are having same
71.	In which pair of complex the EAN of metal		hybridization of ce	ntral atom?
	atom/ ion is same?		1) $[PtCl_4]^{2-}$ and $[Nicken]$	$[1_4]^{2-}$
	1) $[Ni(en)_2]^{2+}$, $[Sc(H_2O)_6]^{3+}$		2) $[cu(NH_3)_4]^{2+}$ and	$[PtCl_4]^{2}$
	2) $[Fe(CN)_6]^{3-}$, $[Co(CN)_6]^{3-}$		3) [Ni(CO) ₄] and [N	${ m Vi}({ m CN})_4]^{2-1}$
	3) $[Ni(CO)_4]$, $[Fe(CN)_6]^{4-}$		4) All of these	
	4) [Ni(en) ₂], [Fe(H ₂ O) ₆] ²⁺	77.	Find the correct ma	atch:
72.	Which one of the following statement is		Complex	Nature
	incorrect?		1) $K_4[Fe(CN)_6]$	Paramagnetic
	1) Greater the stability constant of complex		2) $[FeF_6]^{4-}$	sp ³ d ² hybridisation
	greater is its stability		3) [Ni(CO) ₄]	Square planar complex
	2) Greater the charge on the central metal ion		4) $[Cu(NH_3)_4]^{2+}$	Diamagnetic, square planar
	greater is the stability of complex			Complex

NE	ET		Co – Ordination Compounds
78.	Which is mismatched regarding spin only	87.	The factors which can increase the stability of
	magnetic moment of the complexes?		complex is
	1) $[FeFe]^{3-} = 5.92 BM$		1) Presence of chelate rings
	2) $Cr(CO)_6 = 0.00 \text{ BM}$		2) Synergic effect
	3) $[Ni(CN)_4]^{2-} = 0.00 \text{ BM}$		3) Macrocyclic effect
	4) cis Platin = 2.84 BM		4) All of these
79.	The EAN of Mn in Mn ₂ (CO) ₁₀ is	88.	Identify the metal that form a tetrahedral
	1) 35 2) 38 3) 36 4) 37		complex with Cl ⁻ ligand and of magnetic
80.	Of the following complexes, the one with the		moment 5.91 BM in +2 oxidation state
	largest value of the crystal field splitting is		1) Ni 2) Mn 3) Cr 4) Fe
	1) $[Fe(H_2O)_6]^{+3}$ 2) $[Ru(CN)_6]^{3-1}$	89.	Which one of the following statements is true
	3) $[Fe(H_2O)_6]^{+2}$ 4) $[Fe(NH_3)_6]^{3+}$		about [Cu(NH ₃) ₄] ⁺² primary valency and EAN ?
81.	Magnetic moment of $[Ag(CN)_2]^-$ is zero. How		1) +1, 35 2) +2, 35
	many unpaired electrons are there?		3) +3, 36 4) +2, 36
	1) Zero 2) 4 3) 3 4) 1	90.	Which of the following has highest magnetic
82.	The hybridization of beryllium in the complex	-•	moment?
	$[Be(H_2O)_4](NO_3)_2]$ is		1) $K_4[Fe(CN)_6]$ 2) $[Fe(H_2O)_6]SO_4$
	1) sp 2) sp ² 3) sp ³ 4) sp ³ d ²	_	3) $K_3[Fe(CN)_6]$ 4) $[Co(NH_3)_6]SO_4$
83.	When O_2 reacts with PtF_6 , which one of the	91.	Low spin complex is formed by
	following is formed?		1) sp^3d^2 2) d^2sp^3 hybridization
	1) $O_2^{\oplus} PtF_6^{(-)}$ 2) $PtOF_5$		3) sp ³ hybridisatin 4) sp ³ hybridization
	3) $O_2^{(\cdot)} PtF_6^{\oplus}$ 4) $PtOF_4$	92.	In which of the following complex, central
84.	Choose the correct statement		metal is dsp ² hybridized?
	1) In $[NiCl_4]^{-1}$, Ni has dsp^2 -hybridisation		1) $[PtCl_4]^{2-}$ 2) $[NiCl_4]^{2-}$
	2) $[PtCl_2(NH_3)_2]$ has three stereisomers and two		3) $[cuCl_4]^{2-}$ 4) All of these
	3) $[Fe(CN)_6]^{4(.)}$ is diamagnetic	93.	The geometry of [NiCl ₄] ²⁻ and [PtCl ₄] ²⁻ are
	4) $[Cr(ox)_3]^{3(-)}$ has three stereiosomers and two		1) Tetrahedral
	structural isomers possible		2) Square planar
85.	In $[Fe(H_2O)_6]^{2+}$, hybridization of the central		3) Square planar and tetrahedral respectively
	atom and geometry is		4) Tetrahedral and square planar respectively
	1) sp^3d^2 , octahedral 2) d^2sp^3 , octahedral	94.	Which of the following complex ion is expected
	3) $sp^{3}d$, pentagonal 4) sp^{3} , tetrahedral		to absorb visible light?
86.	The CFSE value of d ⁵ ion in a weak octahedral		1) $[Ni(CO)_4]$
	ligand field is		2) $[Zn(NH_3)_6]^{2+}$
	1) -8 Dq 2) 4 Dq 3) -6 Dq 4) 0 Dq		3) $[Sc(H_2O)_3(NH_3)_3]^{3+}$ 4) $[Cr(NH_3)_6]^{3+}$

NE	El	Co – Ordination Compounds
95.	Hybrid state of Sn in [Sn(OH) ₆] ²⁻	103.Which one of the following complex has
	1) sp^3 2) sp^3d^2 3) sp^3d 4) sp^3d^3	maximum energy difference between t_{2g} and e_g
96.	Amongst the following ions which one has the	set of orbitals?
	highest magnetic moment value?	1) $[Ni(NH_3)_6]^{2+}$ 2) $[Cr(NH_3)_6]^{3+}$
	1) $[Cr(H_2O)_6]^{3+}$ 2) $[Fe(H_2O)_6]^{2+}$	3) $[Mo(NH_3)_6]^{3+}$ 4) $[W(NH_3)_6]^{3+}$
	3) $[Zn(H_2O)_6]^2$ + 4) $[FeFe]^{3-2}$	104. The hybridization of Ni in [NiCl ₄] ⁻ and Pt in
97.	The geometries of Ni(CO) ₄ and $[Cu(NH_3)_4]^{+2}$	[PtCl ₄] ⁻ respectively are
	are respectively	1) sp^3 , sp^3 2) dsp^2 and dsp^2
	1) Tetrahedral and square planar	3) dsp^2 and sp^3 4) sp^3 and dsp^2
	2) Both tetrahedral	105. The outer orbital complex is
	3) Square planar and tetrahedral	1) $[Cr(NH_3)_6]^{3+}$ (2) $[Ni(H_2O)_6]^{2+}$
	4) Both square planar	3) $[V(H_2O)_6]^{3+}$ (4) $[Co(NH_3)_6]^{3+}$
98.	Which of the following complexes is the	106.Among the divalent ions of first row of
	example of dsp ² hybridisation?	transition element, the tendency to form stable
	1) $[Ni(CO)_4]$ 2) $[Ni(CN)_4]^{-2}$	complexes increases as
	3) $[Zn(NH_3)_4]^{-2}$ 4) $[ZnCl_4]^{2-1}$	1) $Mn^{II} < Fe^{II} < Ni^{II} < Cu^{II}$
99.	The outer orbital complexes among the	2) $Mn^{II} > Cu^{II} > Ni^{II} < Fe^{II}$
	following are	3) $Cu^{II} > Mn^{II} > Fe^{II} < Ni^{II}$
	I. $[Co(CN)_6]^{-3}$ II. $[Fe(H_2O)_6]^{+2}$	4) $Ni^{II} > Mn^{II} > Cu^{II} > Fe^{II}$
	III. $[Co(NH_3)_6]^{+3}$ IV. $[CoFe_6]^{-3}$	107.Organometallic compound is
	1) II & IV 2) II & III	1) Na_2CO_3 2) Na -O-CH ₃
	3) I & IV 4) I & II	$3) NaNH_2 \qquad (4) Na_2C_2$
100	The spin only magnetic moment of metal ion	108.Zinc but not copper is used for the recovery of
	having d ⁸ system in square planar complex with	Ag from the complex [Ag(CN) ₂] ⁻ because
	strong ligand field is	1) Zinc is cheaper
	1) Zero 2) 2.83 BM	2) Zn is more powerful reducing agent
	3) 3.87 BM 4) 4.90 BM	3) Cu does not form complex
101	.Which of the following is most stable	4) Both (1) & (2)
	complex?	109.Dimethyl glyoxime reagent is used as co-
	1) $[Fe(CN)_6]^{4-}$ 2) $[Fe(H_2O)_6]^{3+}$	ordinating reagent in the quantitative
	3) $[FeFe]^{3-}$ 4) $[Fe(NH_3)_6]^{3+}$	estimation of
102	.Which one of the following complex is	1) Copper 2) Palladium
	expected to be of violet colour?	3) Silver 4) Nickel
	1) $[Ni(H_2O)_6]^{2e}$ (aq) 2) $[Ni(H_2O)_4(en)]^{2\oplus}$ (aq)	
	3) $[Ni(H_2O)_2(en)]^{2\oplus}$ (aq) 4) $[Ni(en)_3]^{2\oplus}$ (aq)	

- ---

....

Co-Ordination Compounds

110. The number of five membered and six membered ring that can be formed in Ni(dmg)₂ respectively is

1) 1, 1 2) 2, 2 3) 1, 2 4) 2, 1

111.Match the information given in Column-I and

Column-II.

- a) Brown ring (i) $Fe_4[Fe(CN)_6]_3$
- b) Prussian tube (ii) $K[PtCl_3(\eta^2 C_2H_4)]$
- c) Zeiss's salt (iii) (Ph₃P)₃RhCl

d)Wilkinson catalyst(iv) [Fe(H₂O)₅NO]⁺²

- 1) a(i), b(iv), c(iii), d(ii)
- 2) a(i), b(iv), c(ii), d(iii)
- 3) a(iv), b(i), c(ii), d(iii)
- 4) a(iv), b(i), c(iii), d(ii)

112.Identify incorrect statement

1) Tetrahedral complex containing two unsymmetrical bidentate ligand can exhibit optical activity as they lack plane of symmetry

2) Zeise's salt is an organometallic compound containing C_2H_4 molecule as one of this ligand

3) EAN (effective atomic number) of Fe in its complex is always 36

4) All of these

113.Dimethyl glyoxime gives a red precipitate with Ni²⁺ which is used for its detection. To get this precipitate readily, the best p^H range is

1) < 1 2) 2 - 3 3) 3-4 4) 9 - 11

_										
ĺ	LEVEL-2 KEY									
	1	2	3	4	5	6	7	8	9	10
	4	4	4	3	4	3	1	3	1	3
	11	12	13	14	15	16	17	18	19	20
	2	4	3	4	4	2	4	4	2	3
	21	22	23	24	25	26	27	28	29	30
	2	1	3	1	2	2	2	2	1	3
	31	32	33	34	35	36	37	38	39	40
	4	3	3	3	4	3	2	3	3	4
	41	42	43	44	45	46	47	48	49	50
	2	3	2	2	2	4	3	3	1	4
	51	52	53	54	55	56	57	58	59	60
	1	2	4	2	2	1	2	4	1	1
	61	62	63	64	65	66	67	68	69	70
	1	1	2	3	4	2	3	4	3	1
	71	72	73	74	75	76	77	78	79	80
1	3	4	1	1	2	2	2	4	3	2
	81	82	83	84	85	86	87	88	89	90
	1	3	1	3	1	4	4	2	2	2
	91	92	93	94	95	96	97	98	99	100
	2	1	4	4	2	4	1	2	1	1
	101	102	103	104	105	106	107	108	109	110
	1	4	4	4	2	1	4	4	4	2
	111	112	113							
1	2	2	4							

NE	21		Co – Ordination Compounds
	LEVEL-2	5.	The pair in which both species have the same
1.	In which of the following pairs, both the		magnetic moment (spin only) value is :
	complexes show optical isomerism?		1) $[Cr(H_2O)_6]^{2^+}$, $[CoCl_4]^{2^-}$
	1) cis-[Cr(C ₂ O ₄) ₂ Cl ₂] ³⁻ , cis-[Co(NH ₃) ₄ Cl ₂]		2) $[Cr(H_2O_6)^{2^+}, [Fe(H_2O_6)^{2^+}]^{2^+}$
	2) [Co(en)3] Cl3, cis-[Co(en)2Cl2]Cl		(3) $[Mn(H_2O)_6]^{2+}$, $[Cr(H_2O)_6]^{2+}$
	3) [PtCl(dien)Cl], [NiCl ₂ Br ₂] ^{2–}		4) $[CoCl_4]^{2-}$, $[Fe(H_2O)_6]^{2+}$
	4) [Co(NO ₃) ₃ (NH ₃) ₃], cis-[Pt(en) ₂ Cl ₂]	6.	The number of possible isomers of an
2.	The correct order for the wavelength of		octahedral complex [Co(C ₂ O ₄) ₂ (NH ₃) ₂] ⁻ is :
	absorption in the visible region is :		1) 1 2) 2 3) 3 4) 4
	1) $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$	7.	The ligands in anti-cancer drug cis-platin are :
	2) $[Ni(NO_2)_6]^{4-} < [Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+}$		1) NH ₃ ,Cl 2) NH ₃ ,H ₂ O
	3) $[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4+}$		3) C1, H ₂ O 4) NO, C1
	4) $[Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+} < [Ni(NO_2)_6]^{4-}$	8.	Which of the following coordination entities
3.	Assertion : Potassium ferrocyanide is		should be expected to absorb light of lowest
	diamagnetic, whereas potassium ferricyanide is	-	frequency?
	paramagnetic.		1) $[Cr(en)_3]^{3+}$ 2) $[CrCl_6]^{3-}$
	Reason : Crystal field splitting in ferrocyanide		3) $[Cr(NH_3)_6]^{3+}$ 4) $[Cr(CN)_6]^{3-}$
	ion is greater than that of ferricyanide ion.	9.	Assertion : When NO reacts with FeSO ₄ , a
	1) If both Assertion and Reason are true and the	NOA	brown coloured complex is formed.
	reason is the correct explanation of Assertion.	:107:	Reason : In the complex, the coordination
	2) If both Assertion and Reason are true but reason is not the correct explanation of		number of Fe is 6.
	Assertion.		1) Both A and R are true and R is the correct
	3) If Assertion is true but Reason is false.		explanation of A.
	4) If both Assertion and Reason are false.		2) Both A and R are true but R is not correct evaluation of A
4.	Among the following, the species having		3) A is true but R is false
	square planar geometry for central atom are :		4) A is false but R is true
	i. [XeF4] ii. SF4		5) Both A and R are false
	iii. $[NiCl_4]^{2-}$ iv. $[PtCl_4]^{2-}$	10.	Assertion : CO and CN are referred as π acid
	1) i and iv 2) i and ii		ligands.
	3) ii and iii 4) iii and iv		Reason : In CO and CN vacant π type orbitals
			are present.

NE	ET		Co – Ordination Compounds
	1) Both A and R are true and R is the correct	15.	Which one amongst of the following isomerism
	explanation of A.		is shown by [Pt(NH ₃) ₂ Cl ₂] ?
	2) Both A and R are true but R is not correct		1) Structural 2) Geometrical
	explanation of A		3) Optical 4) Conformational
	3) A is true but R is false	16.	[Fe(H ₂ O) ₅ NO] ²⁺ is a complex formed during the
	4) A is false but R is true		brown ring test for NO_3^- ion. In this complex,
	5) Both A and R are false		1) There are three unpaired electron so that its
11.	Which one has the highest paramagnetism ?		magnetic moment is 3.87 BM
	1) Ni(CO) ₄ 2) [Co(NH ₃) ₆]Cl ₃		2) NO transfer its electron to Fe^{2+} so that iron as
	3) [Ni(NH ₃) ₆]Cl ₂ 4) [Cu(NH ₃) ₄]Cl ₂		Fe(I) and NO as NO ⁺
12.	For the square planar complex [M(1) (2) (3) (4)]		3) The colour is because of charge transfer
	(where, M =central metal ; a, b, c and d are		4) All of the above statements are correct.
	monodentate ligands) the number of possible	17.	Mixture $X = 0.02$ mole of $[Co(NH_3)_5SO_4]Br$
	geometrical isomers are		and 0.02 mole of [Co(NH ₃) ₅ Br]SO ₄ was
	1) 1 2) 2 3) 3 4) 4		prepared in 2L of solution
13.	When AgNO ₃ is added to a solution of		1 L of mixture X + excess $AgNO_3 \rightarrow Y$
	Co(NH ₃) ₅ Cl ₃ , the precipitate of AgCl shows		1 L of mixture X + excess $BaCl_2 \rightarrow Z$
	two ionizable chloride ions. This means :	_	Number of moles Y and Z are
	1) Two chloring atoms satisfy primary valency		1) 0.03, 0.02 2) 0.01, 0.02
	and one secondary valency		3) 0.02, 0.01 4) 0.02, 0.02
	2) One chlorine atom satisfies primary as well as	18.	Assertion : $[Ti(H_2O)_6]^{3+}$ is coloured while
	secondary valency	:107:1	$[Sc(H_2O)_6]^{3+}$ is colourless.
	3) Three chlorine atoms satisfy secondary		Reason : d-d transition is not possible in
	valency		$[Sc(H_2O)_6]^{3+}$ because no d-electron is present
	4) Three chlorine atoms satisfy secondary		1) If both assertion and reason are true and
	valency		reason is the correct explanation of assertion.
14.	The hypothetical complex		2) If both assertion and reason are true but
	Chlorodiaguatriamminecobalt (III) chloride		reason is not the correct explanation of assertion.
	can be represented as		3) If assertion is true but reason is false.
	1) $[CoCl(NH_3)_3 (H_2O)_2]C_2$		4) If both assertion and reason are false.
	2) $[C_0(N H_2)_2(H_2O)]C_{12}]$	19.	Assertion : After spilitting of d-orbitals during
	$2) [C_{2}(NUL_{2})_{2}(UL_{2})_{2}(UL_{2})_{3}]$		complex formation, the orbitals form two sets of
	5) [CO(INH3)3 (H2U)2]CI]		orbitals t_{2g} and e_g octahedral field.
	4) [Co(NH ₃) ₃ (H ₂ O) ₃]Cl ₃		Reason : Splitting of d-orbitals occurs only in the
			case of strong field ligands such as CN⁻

NE	ET		Co – Ordination Compounds
	1) If both assertion and reason are true and	25.	Cr ⁺³ in aquous medium form green coloured
	reason is the correct explanation of assertion.		complex with NH ₃ ligand. How many ligand
	2) If both assertion and reason are true but		associated
	reason is not the correct explanation of assertion.		1) 3 2) 4 3) 5 4) 6
	3) If assertion is true but reason is false.	26.	Which one has largest number of isomers ?
	4) If both assertion and reason are false.		1) $[Co(en)_2Cl_2]^+$
20.	CuSO ₄ . 5H ₂ O is blue in colour while CuSO ₄ is		2) $[C_0(NH_2)_5 C_1]^{2+}$
	colourless, because		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
	1) H_2O is a strong field ligand than SO_4^{2-}		3) [lr(PhR ₃) ₂ H(CO)]
	2) SO_4^2 is a strong field ligand		4) $[Ru(NH_3)_4Cl_2]^+$
	3) CuSO ₄ cannot form the complex	27.	The correct order of magnetic moments (only
	4) No d-d transition is possible in $CuSO_4$		spin value in BM) among is :
21.	Assertion (A) : Complexes of MX_6 and MX_5L		1) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$
	type (X and L are unidentate) do not show		2) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
	geometrical isomerism.		3) $[F_{e}(CN)_{c}]4^{-} > [M_{p}C]_{c}]2^{-} > [C_{0}C]_{c}]2^{-}$
	shown by complexes of coordinate number _6		(1) [1] ((1)) [1] = [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
	1) If both assertion and reason are true and		4) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$
	reason is the correct explanation of assertion.	28.	The oxidation state of Cr in [Cr(NH ₃) ₄ Cl ₂] ⁺
	2) If both assertion and reason are true but		is:
	reason is not the correct explanation of assertion.		1) 0 2) +1 3) +2 4) +3
	3) If assertion is true but reason is false.	29.	Which of the following will show optical
	4) If both assertion and reason are false.		isomerism?
22.	Trien is		1) $[Cu(NH_3)_4]^{2+}$ 2) $[ZnCl_4]^{2-}$
	1) Hexa dentate, Mono anionic		3) $[Cr(C_2O_4)_3]^{3-}$ 4) $[Co(CN)_6]^{3-}$
	2) tetradentate, neutral	30.	The value of 'spin only' magnetic moment for
	3) tetradentate, dianion		one of the following configurations is 2.84 BM.
	4) Mono dentate, anion		The correct one is:
23.	Which of the following is diamagnetic complex		1) d^4 (in strong field ligand)
	1) $[Co(OX)_3]^{3-}$, $[Fe(CN)_6]^{4-}$ 2) $[Co(Ox)_3]^{3-}$, $[FeF_6]^{3-}$		2) d^4 (in weak field ligand)
	3) $[Fe(Ox)_3]^{3-}$, $[FeF_6]^{3-}$ 4) $[Fe(CN)_6]^{3-}$, $[CoF_6]^{3-}$		3) d^3 (in weak as well as strong field ligand)
24.	Which of the following can be reduce easily		1) d5 (in strong field ligand)
	1) V(CO) ₆ 2) Mo(CO) ₆		
	3) $\left[\operatorname{Co}(\operatorname{CO})_{4}\right]^{-}$ 4) Fe(CO) ₅		

NE	ET		Co – Ordination Compounds		
31.	Which one of the following complexes would	38.	In which of the following octahedral complexes		
	exhibit the lowest value of paramagnetic		of Co (at no. 27), will the magnitude of Δ_0 be		
	behaviour ?		the highest?		
	1) $[Co(CN)_6]^{3-}$ 2) $[Fe(CN)_6]^{3-}$		1) $[Co(C_2O_4)_3]^{3-}$ 2) $[Co(H_2O)_6]^{3+}$		
	3) $[Mn(CN)_6]^{3-}$ 4) $[Cr(CN)_6]^{3-}$		3) $[Co(NH_3)_6]^{3+}$ 4) $[Co(CN)_6]^{3-}$		
32.	The IUPAC name for the complex [Co(NO ₂)	39.	Which of the following has an optical isomer?		
	(NH ₃) ₅]Cl ₂ is :		1) [Co (en) (NH ₃) ₂] ²⁺ 2) [Co(H ₂ O) ₄ (en)] ³⁺		
	1) Nitrito-N-pentaamminecobalt(III) chloride		3) [Co (en) ₂ (NH ₃) ₂] ³⁺ 4) [Co (NH ₃) ₃ Cl] ⁺		
	2) Nitrito-N-pentaamminecobalt(II) chloride	40.	Which of the following pairs represents linkage		
	3) Pentaamminenitrito-N-cobalt(II) chloride	isomers ? 1) [Pd(PPh ₃) ₂ (NCS) ₂] and [Pd(PPh ₃) ₂ (SCN) ₂]			
	4) Pentaamminenitrito-N-cobalt(III) chloride				
33.	In Fe(CO)5, the Fe – C bond possesses :		2) $[Co(NH_2)_5 NO_2] SO_4$ and $[Co(NH_2)_5]$		
	1) π -character only 2) both σ and π characters		(SO ₄)] NO ₃ 3) [PtCla (NHa) / Pro and [Pt Pro (NHa) /] Cla		
	3) ionic character only 4) σ -character only				
34.	How many EDTA (ethylenediaminetetraacetic		3) $[PtCl_2 (NH_3)_4 Br_2 and [Pt Br_2 (NH_3)_4] Cl_2$		
	acid) molecules are required to make an		4) [Cu (NH ₃) ₄] [Pt Cl ₄] and [Pt (NH ₃) ₄ [CuCl ₄]		
	octahedral complex with a Ca ²⁺ ion?	41.	Which one of the following has an optical		
	1) Six 2) Three 3) One 4) Two		isomer?		
35.	The 'spin only' magnetic moment (in units of		1) $[Zn(en)(NH_3)_2]^{2+}$ 2) $[Co(en)_3]^{3+}$		
	Bohr magneton, μ_B) of Ni ²⁺ in aqueous		3) $[Co(H_2O)_4(en)]^{3+}$ 4) $[Zn(en)_2]^{2+}$		
	solution would be (atomic number Ni = 28)		(en = ethylenediamine)		
	1) 2.84 2) 4.80 3) 0 4) 1.73	42.	Which of the following facts about the complex		
36.	Which one of the following has a square planar		[Cr(NH ₃) ₆]Cl ₃ is wrong ?		
	geometry?		1) The complex involves d ² sp ³ hybridisation and		
	1) [NiCl ₄] ^{2–} 2) [PtCl ₄] ^{2–}		is octahedral in shape.		
	3) [CoCl ₄] ^{2–} 4) [FeCl ₄] ^{2–}		2) The complex is paramagnetic.		
	(At. no. Co = 27, Ni = 28, Fe = 26, Pt = 78)		3) The complex is an outer orbital complex.		
37.	The coordination number and the oxidation		4) The complex gives white precipitate with		
	state of the element 'E' in the complex		silver nitrate solution.		
	$[E(en)_2(C_2O_4)]$ NO ₂ (when 'en' is ethylene	43.	The magnetic moment (spin only) of $[NiCl_4]^{2-}$		
	diamine) are, respectively,		is:		
	1) 4 and 2 2) 4 and 3 3) 6 and 3 4) 6 and 2		1) 1.82 BM 2) 5.46 BM		
			3) 2.82 BM 4) 1.41 BM		

NE	ET	Co – Ordination Compounds
44.	Which among the following will be named as	50. On treatment of 100 mL of 0.1 M solution of
	dibromidobis (ethylene diamine) chromium	CoCl ₃ .6H ₂ O with excess AgNO ₃ ; 1.2 ×10 ²² ions
	(III) bromide?	are precipitated. The complex is :
	1) [Cr (en) ₃]Br ₃ 2) [Cr(en) ₂ Br ₂]Br	1) $[Co(H_2O)_3Cl_3].3H_2O$
	3) [Cr(en)Br ₄] ⁻ 4) [Cr(en)Br ₂]Br	2) $[Co(H_2O)_6]Cl_3$
45.	Which of the following complex species is not	3) $[Co(H_2O)_5Cl]Cl_2.H_2O$
	expected to exhibit optical isomerism?	4) $[Co(H_2O)_4Cl_2]Cl_2H_2O$
	1) [Co(en) ₃] ³⁺ 2) [Co(en) ₂ Cl ₂] ⁺	51. Consider the following reaction and
	3) [Co(NH ₃) ₃ Cl ₃] 4) [Co(en) (NH ₃) ₂ Cl ₂] ⁺	Statements: $Co(NH_3)_4Br_2]^+ + Br^- \rightarrow [Co(NH_3)_3Br_3] + NH_3$
46.	The octahedral complex of a metal ion M^{3+}	(I) Two isomers are produced if the reactant
	with four monodentate ligands L_1 , L_2 , L_3 and	complex ion is a cis-isomer.
	L_{Λ} absorb wavelengths in the region of red.	(II) Two isomers are produced if the reactant
	green, yellow and blue, respectively. The	complex ion is a <i>tran</i> -isomer.
	increasing order of ligand strength of the four	(III) Only one isomer is produced if the reactant
	ligands is :	complex ion is a <i>trans</i> -isomer.
	1) $L_4 < L_3 < L_2 < L_{12}$) $L_1 < L_3 < L_2 < L_4$	(IV) Only one isomer is produced if the reactant
	3) $L_3 < L_2 < L_4 < L_1$ 4) $L_1 < L_2 < L_4 < L_3$	complex ion is a <i>cis</i> -isomer.
47	The number of geometric isomers that can exist	The correct statements are:
1/1	for square planar [Pt (Cl) (pv) (NH ₃)	1) (111) and (1V) 2) (11) and (1V) 2) (1) and (11) (1) and (11)
		5) (1) and (11) 4) (1) and (11) 52 The exidation states of Cr in $[Cr(H O)] [C]$
	(NH_2OH)] ¹ is (py = pyriaine):	52. The oxidation states of CI in $[CI(II_2O)_6]CI_3$, $[Cr(C_2H_2)_2]$ and $K_2[Cr(CN)_2(O)_2(O_2)(NH_2)]$
10	1) 2 2) 3 3) 4 4) 6 The neighboring the same magnetic magnetic $\frac{1}{2}$	respectively are :
48.	The pair naving the same magnetic moment is : [At No : $C_{\pi} = 24$ Mm = 25 Eo = 26 Co = 27]	1) +3, 0, and +6 2) +3, 0, and +4
	[At. No.: CI = 24, NIII = 23, FC = 20, C0 = 27]	3) +3, +4, and +6 4) +3, +2, and +4
	1) $[Cr(H_2O)_6]^2$ and $[Fe(H_2O)_6]^2$	53. Homoleptic octahedral complexes of a metal
	2) $[Mn(H_2O)_6]^{2+}$ and $[Cr(H_2O)_6]^{2+}$	ion 'M ³⁺ ' with three monodentate ligands L_1 , L_2
	3) $[CoCl_4]^{2-}$ and $[Fe(H_2O)_6]^{2+}$	and L_3 absorb wavelengths in the region of
	4) $[Cr(H_2O)_6]^{2+}$ and $[CoCl_4]^{2-}$	green, blue and red respectively. The increasing
49.	Which one of the following complexes shows	order of the ligand strength is :
	optical isomerism ? (en = ethylenediamine)	1) $L_1 < L_2 < L_3$
	1) <i>cis</i> [Co(en) ₂ Cl ₂]Cl 2) <i>trans</i> [Co(en) ₂ Cl ₂]Cl	2) $L_3 < L_2 < L_1$
	3) [Co(NH ₃) ₄ Cl ₂]Cl 4) [Co(NH ₃) ₃ Cl ₃]	5) $L_2 < L_1 < L_3$
_		$+j L_3 > L_1 > L_2$

NE	ET		Co – Ordination Compounds
54.	The complex that has highest crystal field	59.	The coordination number of Th in
	splitting energy (Δ), is :		$K_4[Th(C_2O_4)_4(OH_2)_2]$ is : $(C_2O_4^{2-} = Oxalato)$
	1) K ₂ [COCl ₄] 2) [CO(NH ₃) ₅ (H ₂ O)]Cl ₃		1) 14 2) 10 3) 6 4) 8
	3) $[CO(NH_3)_5C1]Cl_2$ 4) $K_3[CO(CN)_6]$	60.	The number of bridging CO ligand(s) and Co-
55.	Two complexes $[Cr(H_2O)_6]Cl_3$ (A) and		Co bond (s) in Co ₂ (CO) ₈ , respetively are :
	[Cr(NH ₃) ₆]Cl ₃ (B) are violet and yellow		1) 4 and 0 2) 0 and 2
	coloured respectively. The incorrect statement		3) 2 and 1 4) 2 and 0
	regarding them is :	61.	Match the metals (column I) with the
	1) Δ_0 value for (A) is less than that of (B).		coordination compound(s)/ emzyme (s)
	2) both absorb energies corresponding to their		(column II):
	complementary colors.		(column I) (column II)
	3) Δ_0 values of (A) and (B) are calculated from		Metal Coordination compound(s)
	the energies of violet and yellow light,		/enzyme(s)
	respectively.		(A) Co (i) Wilkinson catalyst
	4) both are paramagnetic with three unpaired		(B) Zn (ii) ChlorophyII
	electrons.		(C) Rh (iii) Vitamin B_{12}
56.	The difference in the number of unpaired		(D) Mg (iv) Carbonic anhydrase
	electrons of a metal ion in its high-spin and		1) (A)-(i);(B)-(ii);(C)-(iii);(D)-(iv)
	low-spin octahedral complexes is two. The		2) (A)-(iv);(B)-(iii);(C)-(i);(D)-(ii)
	metal ion is:		3) (A)-(iii);(B)-(iv);(C)-(i);(D)-(ii)
	1) Co^{2+} 2) Fe^{2+} 3) Mn^{2+} 4) Ni^{2+}		4) (A)-(ii);(B)-(i);(C)-(iv);(D)-(iii)
57.	A reaction of cobalt(III) chloride and	62.	The magnetic moment of an octahedral
	ethylenediamine in a 1 : 2 mole ratio generates		homoleptic Mn(II) complex is 5.9 BM. The
	two isomeric products A (violet coloured) and		suitable ligand for this complex is:
	B(green coloured). A can show optical activity,		1) Ethylenediamine 2) CN ⁻
	but, B is optically inactive. What type of		3) NCS ⁻ 4) CO
	isomers does A and B represent?	63.	Mn ₂ (CO) ₁₀ is an organometallic compound due
	1) Ionisation isomers		to the presence of :
	2) Linkage isomer		1) $Mn - C$ bond 2) $C - O$ bond
	3) Coordination isomers		3) $Mn - O$ bond 4) $Mn - Mn$ bond
	4) Geometrical isomers	64.	The metal d-orbitals that are directly facing the
58.	The total number of isomers for a square planar		ligands in K ₃ [Co(CN) ₆] are :
	complex $[M(F) (Cl) (SCN) (NO_2)]$ is :		1) d_{xz} , d_{yz} and d_{z^2} 2) d_{xy} and $d_{x^2-y^2}$
	1) 16 2) 4 3) 12 4) 8		3) d_{xy} , d_{xz} and d_{yz} 4) $d_{x^2-y^2}$ and d_{z^2}

NEET

			LI	EVEL	-2 KI	EY			
1	2	3	4	5	6	7	8	9	10
2	1	3	1	2	3	1	2	2	1
11	12	13	14	15	16	17	18	19	20
3	3	2	1	2	4	3	1	3	4
21	22	23	24	25	26	27	28	29	30
3	2	1	1	4	1	4	4	3	1
31	32	33	34	35	36	37	38	39	40
1	4	2	3	1	2	3	4	3	1
41	42	43	44	45	46	47	48	49	50
2	3	3	2	3	2	2	1	1	3
51	52	53	54	55	56	57	58	59	60
4	1	4	4	3	1	4	3	2	3

E-TECH ACADEMY

Co – Ordination Compounds

NE	ET		Co – Ordination Compounds
LE	VEL-3(PREVIOUS YEARQUESTIONS)	6.	In which of the following coordination entities
1.	Copper sulphate dissolves in excess of KCN to		the magnitude of Δ_0 (CFSE in octahedral field)
	give [AIPMT-2006]		will be maximum? [AIPMT-2008]
	1) $Cu(CN)_2$ 2) $CuCN$		1) $[Co(CN)_6]^{3}$ 2) $[Co(C_2O_4)_3]^{3}$
	3) $[Cu(CN)_4]^{3-}$ 4) $[Cu(CN)_4]^{2-}$		3) $[Co(H_2O)_6]^{3+}$ 4) $[Co(NH_3)_6]^{3+}$
2.	[Co(NH ₃) ₄ (NO ₂) ₂]Cl exhibits [AIPMT-2006]	7.	Which of the following complex ions is
	1) linkage isomerism, geometrical isomerism and		expected to absorb visible light? [AIPMT-2009]
	optical isomerism		1) $[Zn(NH_3)_6]^{2+}$ 2) $[Sc(H_2O)_3(NH_3)_3]^{3+}$
	2) linkage isomerism, ionization isomerism and		3) $[Ti(en)_2(NH_3)_2]^{4+}$ 4) $[Cr(NH_3)_6]^{3+}$
	optical isomerism	8.	Out of TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$
	3) linkage isomerism, ionization isomerism and		colourless species are : [AIPMT-2009]
	geometrical isomerism		1) CoFe ³ - and NiCl ₄ ²⁻
	4) ionization isomerism, geometrical isomerism		2) $\operatorname{TiF_6^{2-}}$ and $\operatorname{CoFe^{2-}}$
_	and optical isomerism		3) Cu_2Cl_2 and $NiCl_4^{2-}$
3.	Which of the following will give a pair of		4) $\operatorname{TiF_6}^{2-}$ and $\operatorname{Cu}_2\operatorname{Cl}_2$
	enantiomers [AIPMT-2007]	9.	Which of the following does not show optical
	1) $[Cr(NH_3)_6][Co(CN)_6]$		isomerism? [AIPMT-2009]
	2) $[Co(en)_2Cl_2]Cl$		1) $[Co(en)_3]^{3+}$ (2) $[Co(en)_2Cl_2]^+$
	$3)[Pt(NH_3)_4][PtCl_6]$		3) $[Co(NH_3)_3Cl_3]^0$ 4) $[Co(en)Cl_2(NH_3)_2]^+$
	4) $[Co(NH_3)_4Cl_2] NO_2$	10.	Which one of the following complexes is not
4.	The d electron configurations of Cr^{2+} , Mn^{2+} ,		expected to exhibit isomerism:- [AIPMT-2009]
	Fe^{2+} and Ni^2+ are $3d^*$, $3d^\circ$, $3d^\circ$ and $3d^\circ$	101	1) [Pt (NH ₃) ₂ Cl ₂] 2) [NiCl ₄] ²⁻
	respectively which one of the following aqua		3) $[Ni (en)_3]^{2+}$ 4) $[Ni(NH_3)_4(H_2O)_2]^{2+}$
	complexes will exhibit the minimum	11.	Which of the following complex ion is not
	paramagnetic behaviour [AIPMT-2007]		expected to absorb visible light? [AIPMT-2010]
	1) $[Fe(H_2O)_6]^{2+}$ 2) $[N_1(H_2O)_6]^{2+}$		1) $[Ni(H_2O)_6]^{2+}$ 2) $[Ni(CN)_4]^{2-}$
-	3) $[Cr(H_2O)_6]^2$ 4) $[Mn(H_2O)_6]^2$		3) $[Cr(NH_3)_6]^{3+}$ 4) $[Fe(H_2O)_6]^{2+}$
5.	which of the following complexes exhibits the	12.	The existence of two different coloured
	highest paramagnetic behaviour ? where gly =		complexes with the composition of
	glycine, en = ethylenediamine and $1 = -1$ in with 1 = 2008		$[Co(NH_3)_4Cl_2]^+$ is due to:- [AIPMT-2010]
	bpy=bipyridyl moities) [AIPM1-2008]		1) Ionization isomerism
	1) $[CO(UX)_2 (H_2U)_2]^2$		2) Linkage isomerism
	2) $[11(NH_3)_6]^{\circ} +$ 2) $[N_1(a_1^{-1}a_2) (OII) (OIII) (1+)^{1+}$		3) Geometrical isomerism
	$(\mu_{3})_{2}((\mu_{3})_{2})^{2}$		4) Coordination isomerism
	4) $[\Gamma e(en)(opy)(INH_3)_2]^{-1}$		

13. Crystal field stabilization energy for high spin	20. Red precipitate i
d4 octahedral complex is :- [AIPMT-2010]	solution of dime
1) -0.6 Δ_0 2) -1.8 Δ_0	ammoniacal Ni(II)
3) -1.6 Δ_0 + P 4) -1.2 Δ_0	statements is not tr
14. Of the following complex ions, which is	<u> </u>
diamagnetic in nature? [Pre-AIPMT-2011]	demethylglyoxime = $\prod_{i=1}^{H_3}$
1) $[NiCl_4]^{2-}$ 2) $[Ni(CN)_4]^{2-}$	
3) $[CuCl_4]^{2-}$ 4) $[CoF_6]^{3-}$	1) Red complex has
15. The complex $[Co(NH_3)_6][Cr(CN)_6]$ and	2) Dimethylglyoxi
[Cr(NH ₃) ₆] [Co(CN) ₆] are the examples of	ligand.
which type of isomerism? [Pre-AIPMT-2011]	3) Red complex has
1) Linkage isomerism	4) Complex has sym
2) Ionization isomerism	21. Low spin complex
3) Coordination isomerism	field will have the
4) Geometrical isomerism	Crystal field splitt
16. The complex [Pt(Py)(NH ₃)BrCl] will have how	field, P = Electron
many geometrical isomers ? [Pre-AIPMT-2011]	ו
1) 3 2) 4 3) 0 4) 2	1) $\frac{-2}{4}A_{1} + 2P$
17. Which of the following carbonyls will have the	5 20 1 21
strongest C-O bond? [AIPMT Mains 2011]	3) $\frac{-12}{5}\Delta_0 + P$
1) $[Fe(CO)_5]$ 2) $6[Mn(CO)]^+$) 22 A magnetic memory
3) $[Cr(CO)_6]$ 4) $[V(CO)_6]^-$	22. A magnetic momen
18. Which of the following complex compounds	
will exhibit highest paramagnetic behaviour :-	1) $[COCI_6]$ 3) $[NI;(CNI) 1^2$
(At. No. Ti = 22, Cr = 24, Co = 27, Zn = 30)	$3) [INI(CIN)_4]$
1) $[Zn(NH_3)_6]^{2+}$ [AIPMT Mains 2011]	25. Which of the follow
2) $[Ti(NH_3)_6]^{3+}$	1) mer [Co(NH) C
3) $[Cr(NH_3)_6]^{3+}$	$\frac{1}{1} \prod_{i=1}^{n} \frac{1}{(C_i - C_i)^2} \frac{1}$
4) $[Co(NH_3)_6]^{3+}$	$\frac{3}{24} \text{Cobalt (III) chlorid}$
19. Which one of the following is an outer orbital	complexes with
complex and exhibits paramagnetic behaviour?	following will not
1) $[Cr(NH_3)_6]^{3+}$ [AIPMT Pre. 2012]	with silver nitrates
2) $[Co(NH_3)_6]^{3+}$	
3) $[Ni(NH_3)_6]^{2+}$	$\frac{1}{2} C_{0}C_{13} \cdot 4IN\Pi_{3}$
4) $[Zn(NH_3)_6]^{2+}$	
55 E- TECH ACADEM	Y KUKLA, MUMBAI, MAHAR/

Co – Ordination Compounds is obtained when ethanol thylglyoxime is added to

. Which of the following ue ? [AIPMT Mains 2012]

a tetrahedral geometry.

me functions as bidentate

a square planar geometry.

- nmetrical H-bonding.
- of d⁶-cation in an octahedral e following energy :- (Δ_0 = ing energy in an octahedral pairing energy)

[AIPMT Mains 2012]

1) $\frac{-2}{5}\Delta_0 + 2P$	$2) \ \frac{-2}{5}\Delta_0 + P$
0	e

3)
$$\frac{-12}{5}\Delta_0 + P$$
 4) $\frac{-12}{5}\Delta_0 + 3P$

- nt of 1.73 BM will be shown ollowing :[NEET-UG 2013] 2) $[Cu(NH_3)_4]^{2+}$
 - 4) $TiCl_4$
- wing complexes is used to be [AIPMT 2014] ent? $(1_3]_2)$ cis-[PtCl₂(NH₃)₂]
 - 4) Na_2CoCl_4
- de forms several octahedral ammonia. Which of the give test of chloride ions at 25°C? [AIPMT 2015] 2) CoCl₃.5NH₃
 - 4) CoCl₃ . 3NH

NEET

NE	ET	Co – Ordination Compounds				
25.	Which of these statements about [Co(CN) ₆] ³⁻ is	31. The correct increasing order of trans-effect of				
	true:- [AIPMT 2015]	the following species is : [NEET-II 2016]				
	1) [Co(CN)6] ³⁻ has four unpaired electrons and	1) Br > CN > NH ₃ > C ₆ H ₅				
	will be in a low-spin configuration.	2) $CN^{-} > Br^{-} > C_6H_5^{-} > NH_3$				
	2) [Co(CN)6] ³⁻ has four unpaired electrons and					
	will be in a high spin configuration.	3) $NH_3 > CN^2 > Br^2 > C_6H_5^2$				
	3) [Co(CN)6] ³⁻ has no unpaired electrons and	4) $CN^{-} > C_6H_5^{-} > Br^{-} > NH_3$				
	will be in a high-spin configuration.	32. Jahn-Teller effect not observed in high spin				
	4) [Co(CN)6] ³⁻ has no unpaired electrons and	complexes of [NEET-II 2016]				
	will be in a low-spin configuration.	1) d^4 2) d^9 3) d^7 4) d^8				
26.	The name of complex ion, [Fe(CN)6] ³⁻ is :-	33. An example of a sigma bonded organometallic				
	1) Tricyanoferrate (III) ion [Re-AIPMT 2015]	compound is : [NEET(UG) 2017]				
	2) Hexacyanidoferrate (III) ion	1) Grignard's reagent2) Ferrocene				
	3) Hexacyanoiron (III) ion	3) Cobaltocene 4) Ruthenocene				
	4) Hexacyanitoferrate (III) ion	34. Pick out the correct statement with respect to				
27.	The hybridization involved in complex	[Mn(CN) ₆] ³⁻ :- [NEET(UG) 2017]				
	$[Ni(CN)_4]^{2-}$ is(At.No. Ni = 28)	1) It is sp^3d^2 hybridised and tetrahedral				
	1) $d^2 sp^2$ 2) $d^2 sp^3$ [Re-AIPMT 2015]	2) It is d ² sp ³ hybridised and octahedral				
	3) dsp^2 4) sp^3	3) It is dsp ² hybridised and square planar				
28.	The sum of coordination number and oxidation	4) It is sp ³ d ² hybridised and octahedral				
	number of the metal M in the complex	35. Correct increasing order for the wavelengths of				
	$[M(en)_2(C_2O_4)]Cl$ [Re-AIPMT 2015]	absorption in the visible region the complexes				
	(where en is ethylenediamine) is:	of Co ³⁺ is [NEET(UG) 2017]				
	1) 7 2) 8 3)9 4) 6	1) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(NH3)_6]^{3+}$				
29.	Number of possible isomers for the complex	2) $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$				
	$[Co(en)_2Cl_2]$ Cl will be : $(en =$	3) $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(H_2O)_6]^{3+}$				
	ethylenediamine) [Re-AIPMT 2015]	4) $[Co(en)_3]^{3+}$, $[Co(NH3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$				
• •	1)3 2)4 3)2 4)1	36. The type of isomerism shown by the complex				
30.	Which of the following has longest C-O bond	$[CoCl_2(en)_2] is \qquad [NEET(UG) 2018]$				
	length? (Free C-O bond length in CO is	1) Geometrical isomerism				
	I.128A"). [NEET-I 2016] 1) N'(CO) 2) [C, (CO) 1]	2) Coordination isomerism				
	1) N1(CO) ₄ 2) $[Co(CO)_4]^1$	3) Ionization isomerism				
	3) $[Fe(CO)_4]^2$ (4) $[Mn(CO)_6]^+$	4) Linkage isomerism				

NE		Co – Ordination Compounds
37.	The geometry and magnetic behaviour of the	43. Ethylene diaminetetraacetate (EDTA) ion is:
	complex [Ni(CO) ₄] are [NEET(UG) 2018]	1) Hexadentate ligand with four "O" and two
	1) square planar geometry and diamagnetic	"N" donor atoms [NEET(UG) 2021]
	2) tetrahedral geometry and diamagnetic	2) Unidentate ligand
	3) square planar geometry and paramagnetic	3) Bidentate ligand with two "N" donor atoms
	4) tetrahedral geometry and paramagnetic	4) Tridentate ligand with three "N" donor atoms
38.	Iron carbonyl, Fe(CO) ₅ is[NEET(UG) 2018]	44. Match List-I wit List-II. [NEET(UG) 2021]
	1) tetranuclear 2) mononuclear	List-I List-II
	3) trinuclear 4) dinuclear	a. $[Fe(CN)_6]^{3-}$ (i) 5.92 BM
39.	What is the correct electronic configuration of	b. $[Fe(H_2O)_6]^{3+}$ (ii) 0 BM
	the central atom in $K_4[Fe(CN)_6]$ based on	c. [Fe(CN) ₆] ⁴⁻ (iii) 4.90 BM
	crystal field theory? [NEET(UG) 2019]	d. $[Fe(H_2O)_6]^{2+}$ (iv) 1.73 BM
	1) $t_4^2 e_g^2$ 2) $t_4^6 e_g^0$	Choose the correct answer from the options
	3) $e^3 t_2^3$ 4) $e^4 t_2^2$	given below
40.	The Crystal Field Stabilisation Energy (CFSE)	1) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
	for [CoCl6] ⁴ - is 18000 cm ⁻¹ . The CFSE for	2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
	[CoCk] ²⁻ will be-[NEET(UG) 2019 (ODISHA)]	3) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
	1) 6000 cm ⁻¹ 2) 16000 cm ⁻¹	4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
	3) 18000 cm ⁻¹ 4) 8000 cm ⁻¹	45. The IUPAC name of the complex-
41.	Which of the following is the correct order of	[Ag(H ₂ O) ₂][Ag(CN) ₂] is:[NEET(UG) 2022]
	increasing field strength of ligands to form	1) dicyanidosilver(II) diaquaargentate(II)
	coordination compounds? [NEET(UG) 2020]	2) diaquasilver(II) dicyanidoargentate(II)
	1) SCN ⁻ $<$ F ⁻ $<$ C ₂ O ₄ ²⁻ $<$ CN ⁻	3) dicyanidosilver(I) diaquaargentate(I)
	2) SCN ⁻ < F ⁻ < CN ⁻ < $C_2 O_4^{2-}$	*4) diaquasilver(I) dicyanidoargentate(I)
	3) $F^{-} < SCN^{-} < C_2O_4^{-2} < CN^{-}$	46. The order of energy absorbed which is
	4) $CN^{-} < C_2 O_4^{2} < SCN^{-} < F^{-}$	responsible for the color of complexes
42.	Urea reacts with water to form A which will	(A) $[Ni(H_2O)_2(en)_2]^{2+}$ [NEET(UG) 2022]
	decompose to form B. B when passed through	(B) $[Ni(H_2O)_4(en)]^{2+}$ and (C) $[Ni(en)_3]^{2+}$ is
	Cu ² + (aq), deep blue colour solution C is	1) (A) > (B) > (C) 2) (C) > (B) > (A)
	formed. What is the formula of C from the	$3) (C) > (A) > (B) \qquad 4) (B) > (A) > (C)$
	following? [NEET(UG) 2020]	47. Which complex compound is most stable?
	1) $CuSO_4$ 2) $[Cu(NH_3)_4]^{2+}$	1) [Co (NH ₃) ₃ (NO3) ₃] [NEET(UG) 2023]
	$3) Cu(OH)_2 \qquad 4) CuCO_3.Cu(OH)_2$	2) $[CoCl_2(en)_2] NO_3$
		3) [Co (NH ₃) ₆] ₂ (SO ₄) ₃
		4) [Co (NH ₃) ₄ (H ₂ O) Br](NO ₃) ₂

....

NEET

Co – Ordination Compounds

LEVEL-3 KEY									
1	2	3	4	5	6	7	8	9	10
3	3	2	2	2	1	4	4	3	2
11	12	13	14	15	16	17	18	19	20
2	3	1	2	3	1	2	3	3	1
21	22	23	24	25	26	27	28	29	30
4	2	2	4	4	2	3	3	1	3
31	32	33	34	35	36	37	38	39	40
4	4	1	2	4	1	2	2	2	4
41	42	43	44	45	46	47			
1	2	1	4	4	3	2			

ACADEMY

	LEVEL-1	7.	Amongst the following metals, which has
1.	The transition elements have a general		highest melting point?
	electronic configuration:		1) Ti 2) Cr 3) Fe 4) Cu
	1) $ns^2 np^6 nd^{1-10}$	8.	The melting point of Zn is lower as compared
	2) $(n-1) d^{1} - 10 ns^{0} - 2 np^{0} - 6$		to those of the other elements of 3d series
	3) $(n-1) d^{1} - 10 ns^{1} - 2$		because :
	4) none.		1) the d-orbitals are completely filled.
2.	The general electronic configuration of Zn. Cd		2) the d-orbitals are partially filled.
	and Hg is represented by :		3) d-electrons do not participate in metallic
	1) $(n + 1)d10 ns^2 = 2) (n + 1) d9 ds^2$		bonding.
	$\frac{1}{(n-1)}\frac{1}{d^{-1}}\frac{1}{ns^{-1}} = \frac{2}{(n-1)}\frac{1}{d^{-1}}\frac{1}{4s^{-1}}$		4) (1) and (3) both.
2	3) $(n-1) d^{10}4s^{1}$ 4) $(n-1) d^{10}4s^{0}$	9.	Among the following series of transition metal
5.	The d-block of the periodic table contains the		ions, the one where all metal ions have $3d^2$
	elements of the groups: 1 + 2 + 1 + 2 + 2 + 2 + 1 + 4 + 5 + 14		electronic configuration is :
4	1)2 - 112)3 - 123)3 - 114)3 - 14 Which of the following statements is incorrect		1) Ti^{3+} , V^{2+} , Cr^{3+} , Mn^{4+}
4.	which of the following statements is incorrect		2) Ti ⁺ , V ⁴⁺ , Cr ⁶⁺ , Mn ⁷⁺
	1) The last electron enters into them in (n 1) d		3) Ti^{2+} , V^{3+} , Cr^{2+} , Mn^{3+}
	orbital	10.1	4) Ti^{2+} , V^{3+} , Cr^{4+} , Mn^{5+} .
	2) Their properties are in between those of s- and	10.	Which of the statements is False ?
	p-block elements.		1) In 3d series, there is a regular increase in the
	3) The transition element with smallest atomic		first ionisation enthalpy of transition elements
	number is scandium.		from left to right.
	4) None of these		2) In 3d series, the negative value of standard
5.	The total number of electrons in (n-1) d-		electrode potential (E/V) for M^{2+}/M decreases in
	orbitals in each element, Pd, Ag and Cd		the order $Ti > Mn > Cr > Fe$.
	respectively are:		3) The decreases in metallic radius coupled with
	1) 8, 9, 10 2) 8, 10, 10		increase in atomic mass results in a general
	3) 10, 10, 10 4) none		from Ti to Cu.
6.	Which of the following has largest metallic		4) The higher oxidation state are favoured by the
	radius?		heavier elements (i.e. heavier members) in the
	1) V 2) Mn 3) Ti 4) Co		groups of d-block.

d & f block elements

11.	Maximum oxidation sate is shown by :	16.	Which of the following is true for the species
	1) Os		having 3d ⁴ configuration?
	2) Mn		1) Cr^{2+} is reducing in nature.
	3) Cr		2) Mn^{3+} is oxidising in nature.
	4) Co		3) Both (1) and (2)
12.	The highest oxidation state is exhibited by the		4) None of these
	transition metals with configuration :	17.	First IE of 5d series elements are higher than
	1) $(n-1) d^3ns^2$		those of 3d and 4d series elements. This is due
	2) $(n-1) d^5 n s^1$		to :
	3) $(n-1) d^5ns^2$ 4) $(n-1) d^8ns^2$.		1) bigger size of atoms of 5d-series elements than
13.	Low oxidation states are found in transition		3d-series elements.
	elements when a complex compound has :		2) greater effective nuclear charge is experienced
	1) ligands capable of π acceptor character.		by valence electrons because of the weak
	2) ligands capable of σ donor character.		shielding of the nucleus by $4f$ -electrons in 5d
	3) ligands capable of π acceptor character as well		series.
	as σ donor character.		3) (1) and (2) both.
	4) ligands incapable of π acceptor character as		4) None of these.
	well as σ donar character.	18.	Which amongst the following can give the
14.	Which of the following statements is correct?		greater number of oxidation states?
	1) The lesser number of oxidation states in 3d-		1) V 2) Mn 3) Cr 4) Fe
	series in the beginning of the series is due to the	19.	Which of the following has the maximum
	presence of too few electrons to loose or share		number of unpaired d-electron?
	2) The lesser number of oxidation states in 3d-		1) Zn^{2+} 2) Fe^{2+} 3) Ni^{3+} 4) Cu^{2+}
	series towards the end of the series is due to the	20.	Magnetic moment of Cr^{+2} (Z =24), Mn^{+2} (Z =
	presence of too many electrons and thus fewer		25) and $Fe^{2+}(Z = 26)$ are x,y,z. They are in
	empty orbitals to share electrons with the ligands		order:
	3) (1) and (2) both		1) $x < y < z$ 2) $x > y > z$
	4) None is correct		3) $z < x = y$ 4) $x = z < y$
15.	The stability of particular oxidation state of a	21.	Which one of the following transition metal
	metal in aqueous solution is determined by:		ions is diamagnetic?
	1) enthalpy of sublimation of the metal		1) Co^{2+} 2) Ni^{2+} 3) Cu^{2+} 4) Zn^{2+}
	2) ionisation energy	22.	Which of the following ions give colourless
	3) enthalpy of hydration of the metal ion		aqueous solution?
	4) all of these.		1) Ni ²⁺ 2) Fe ²⁺ 3) Cu ²⁺ 4) Cu ⁺

d & f Block Elements

NEET

-		-
-	-	
	_	

- 23. A metal ion from the first transition series has a magnetic moment (calculated) of 3.87 B.M. How many unpaired electrons are expected to be present in the ion?
 - 1) 1 2) 2 3) 3 4) 4
- 24. The magnetic moment of 25Mn in ionic state is
 - 4.83 B.M, then Mn is in :

1) +2 state	2) +3 state
-------------	-------------

- 3) +4 state 4) +5 state
- 25. The colour of transition metal ions is attributed to:
 - 1) exceptionally small size of cations
 - 2) absorption of ultraviolet rays
 - 3) incomplete (n 1) d subshell
 - 4) absorption of infrared radiations
- 26. The catalytic activity of the transition metals and their compounds is ascribed to :
 - 1) their chemical reactivity.
 - 2) their magnetic behaviour.
 - 3) their unfilled d-orbitals.
 - 4) their ability to adopt multiple oxidation state and their complexing ability.

27. Which forms interstitial compounds?

1) Fe 2) Co 3) Ni 4) All

28. Which of the following statement is correct?

1) Transition metals and their many compounds act as good catalyst.

2) The enthalpies of atomistation of the transition metals are high.

3) The transition metals generally form interstitial compounds with small atoms like C,B, H etc.

4) All of these

29. The yellow colour of chromates changes to orange on acidification due to formation of:

1) Cr³⁺ 2) Cr₂O₃ 3) Cr₂O₇²⁻4) CrO₄⁻

- 30. When acidified solution of $K_2Cr_2O_7$ is shaken with aqueous solution of $FeSO_4$, then :
 - 1) $Cr_2O_7^{2-}$ ion is reduced to Cr^{3+} ions

2)
$$Cr_2O_7^{2-}$$
 ion is converted to CrO_4^{2-} ions

3)
$$Cr_2O_7^{2-}$$
 ion is reduced to Cr

4) $Cr_2O_7^{2-}$ ion is converted to CrO_3

31. Which of the following compounds is used as the starting material for the preparation of potassium dichromate?

- 2) PbCrO₄ (chrome yellow)
- 3) FeCr₂O₄ (chromite)
- 4) PbCrO₄.PbO (chrome red)
- 32. Manganous salt in presence of catalyst zinc sulphate or zinc oxide is oxidised by potassium permanganate in neutral of faintly alkaline medium to :

1) MnO ₂	2) Mn ₂ O ₇
3) Mn ₂ O ₃	4) Can not be oxidized

33. KMnO₄ is the oxo salt of :

1) MnO₂ 2) Mn₂O₇ 3) MnO₃ 4) Mn₂O₃

34. Which of the following statements is false?

1) An acidified solution of $K_2Cr_2O_7$ liberates iodine from potassium iodide

2) In acidic solution, dichromate ions are converted to chromate ions.

3) Potassium dichromate on heating undergoes decomposition to give Cr_2O_3 and O_2 gas.

4) Potassium dichromate is used as a titrant of Fe^{2+} ion.

d & f Block Elements
41. Across the lanthanide series, the basicity of the
lanthanoide hydroxides :
1) increases
2) decreases
3) first increases and then decreases
4) does not change
42. The +3 ion of which one of the following has
half filled 4f subshell?
1) La 2) Lu 3) Gd 4) Ac
43. Actinides :
1) are all synthetic elements
2) includes element 104
3) have only short lived isotopes
4) have variable valency
44. The lanthonoide contraction is reponsible for
the fact that
1) Zr and Y have about the same radius
2) Zr and Uf have shout the same radius
4) Zr and Ce have the same oxidation state
4) Zi and ectinides resemble in :
1) electronic configuration
2) oxidation state
3) ionization energy
4) formation of complexes
46. The separation of lanthanoids by ion exchange
method is based on
1) sizes of the ions
2) oxidation state of the ions
3) the solubility of their nitrates
4) basicity of hydroxides of lanthanides

NEET

LEVEL-1 KEY									
1	2	3	4	5	6	7	8	9	10
3	1	2	4	3	3	2	4	4	1
11	12	13	14	15	16	17	18	19	20
1	3	3	3	4	3	2	2	2	4
21	22	23	24	25	26	27	28	29	30
4	4	3	3	3	4	4	4	3	1
31	32	33	34	35	36	37	38	39	40
3	1	2	2	1	3	3	3	2	2
41	42	43	44	45	46	47	48	49	50
2	3	4	3	1	1				

LEVEL-2

- 1. Amongst the following set of transition metal ions, the one in which all metal ions do not have d-electrons?
 - 1) Cr(VI), Ti(IV), Mn (VII)
 - 2) V(V), Mn(VI), Ni(IV)
 - 3) Sc(III), V (V), Ti (III)
 - 4) Cr(VI), Sc(III), Mn(VI)
- 2. The radii (metallic) of Fe,Co and Ni are nearly same.

This is due to the fact that:

1) lanthanide contraction

2) increased interelectronic repulsion is balanced by increased nuclear charge.

3) increase in radii due to increase in 'n' is compensated by decrease in radii due to increase in effective nuclear charge (Z).

4) atomic radii do not remain constant but decrease in a normal gradation.

3. Which of the following statements is incorrect?
1) In each row i.e. transition series melting points of transition metals rise to a maximum at d⁵ (excludes, Cr, Mn and Tc) and fall regularly as the atomic number increases.

2) The transition metals are very much hard and have low volatility.

3) The metals of the second and third series have greater enthalpies of atomisation than the corresponding elements of the first seires.

4) None

4. Which of the following transition metal ions has the lowest density?

1) Copper	2) Nickel
3) Scandium	4) Zinc

NE	ET	d & f Block Elements
5.	The names transition and inner transition	11. E^{Θ} values for the couples Cr^{3+}/Cr^{2+} and
	metals are used to indicate the elements of :	Mn^{3+}/Mn^{2+} are - 0.41 and + 1.51 volts
	1) d-block elements only	respectively. Considering these values select
	2) f-block elements only	the correct ontion from the following
	3) p- and d-blocks elements respectively	statements
	4) d- and f-blocks elements respectively	$1) Cr^{2+} = t_{2} = r_{2} t_{2} = t_{2} = r_{2} t_{2} = t_{$
6.	Which of the following does not belong to 3d	1) Cr^2 acts as a reducing agent and Mn^2 acts
	series of transition elements?	as an oxidising agent in their aqueous solutions.
	1) Titanium 2) Iron	2) Cr^{2+} (aq.) is more stable than Cr^{3+} (aq.).
	3) Palladium 4) Vanadium.	3) Mn^{3+} (aq.) is more stable than Mn^{2+} (aq).
7.	Which of the following is the most suitable	4) None of these.
	description of transition elements ?	12. Which oxide of manganese is most acidic in
	1) Low melting points	nature ?
	2) No catalytic activity.	1) MnO 2) Mn ₂ O ₇
	3) Show variable oxidation states.	3) Mn_2O_3 4) MnO_2 .
	4) Exhibit inert pair effect.	13. The maximum oxidation state shown by $V(Z =$
8.	In which of the following pairs of elements, the	23), $Cr(Z = 24)$, $Co(Z = 27)$, $Sc(Z = 21)$ are
	(n-1) d-orbitals have same number of electrons?	respectively :
	1) Mn, Fe 2) Cr, Mn	1) + 5, + 6, + 3, + 3 2) + 3, + 4, + 5, + 2
	3) Cu, Zn 4) (2) and (3)	3) + 5, + 3, + 2, + 1 $4) + 4$ in each case.
9.	Which of the following factor may be regarded	14. In which compound does vanadium have an
	as the main cause of Lanthanide contraction?	oxidation number of +4?
	1) Poor shielding by 4f-electrons as compared to	1) NH ₄ VO ₂ 2) K ₄ [V(CN) ₆]
	the electrons in the other sub-shells.	3) VSO ₄ 4) VOSO ₄
	2) Effective shielding of one of the 4f-electrons by	15. In general, the transition elements exhibit their
	another in the sub-shell.	highest oxidation states in their compounds
	3) Poorer shielding by 5d electron of 4f-electrons.	with elements like:
	4) Greater shielding of 5 d electron by 4f-electron.	1) C 2) S 3) S and P4) F and O
10.	Copper has higher second ionization energy	16 The EP (M^2 + (M) value for correct is positive
	than that of both adjacent elements. This is	10. The E° (M^{2} / M) value for copper is positive
	because of :	(+0.34). It is due to :
	1) smaller size of copper (I) ion.	1) its higher enthalpy of atomization.
	2) d^{10} configuration of copper (I) ion.	2) its lower entitalpy of hydration.
	3) higher nuclear charge of copper (I) ion.	$\frac{5}{10000} = \frac{10000}{10000} = \frac{10000}{1000} = \frac{10000}{1000} = \frac{10000}{1000} = \frac{10000}{1000} = $
	4) Larger size of copper (I) ion.	4) HOLE

NE	ET	d & f Block Elements
17.	Which of the following pairs of ions has	24. The highest number of unpaired elelctrons are
	magnetic moment of 5.93 B.M.?	in :
	1) Mn^{2+} , Fe^{3+} 2) Mn^{2+} , Cr^{3+}	1) Fe
	3) Fe ²⁺ , Co ³⁺ 4) None	2) Fe ²⁺
18.	Amongst the following the lowest degree of	3) Fe ³⁺
	paramagnetism per mole of the compound at	4) all have equal number of unpaired electrons
	298 K will be shown by:	25. The least stable oxide at room temperature is :
	1) MnSO ₄ .4H ₂ O 2) CuSO ₄ .5H ₂ O	1) ZnO 2) CuO
	3) FeSO ₄ .6H ₂ O 4) NiSO ₄ .6H ₂ O	3) Sb ₂ O ₃ 4) Ag ₂ O
19.	Compound that is both paramagnetic and	26. Titanium shows magnetic moment of 1.73 BM
	coloured is :	in its compound. What is the oxidation number
	1) K ₂ Cr ₂ O ₇ 2) (NH ₄) ₂ [TiCl ₆]	of Ti in the compound?
	3) VOSO ₄ 4) K ₃ [Cu(CN) ₄]	1) +1 2) +4 3) +3 4) +2
20.	The ions from among the following which are	27. Which one of the following characteristics of
	colourless are :	the transition metals is associated with their
	(i) Ti^{4+} , (ii) Cu^{+1} ,	catalytic activity ?
	(iii) Co^{3+} . (iv) Fe^{2+} .	1) Colour of hydrated ions.
	1) (i) and (ii) only 2) (i), (ii) and (iii)	2) Variable oxidation states.
	3) (iii) and (iv) 4) (ii) and (iii).	4) Paramagnetic behaviour
21.	Which of the followig group of ions is	28 Geman silver is:
	paramagnetic in nature :	1) silver made in Germany
	1) Cu^+ , Zn^{2+} , Sc^{3+} 2) Mn^{2+} , Fe^{3+} , Ni^{2+}	2) an alloy of silver
	3) Cr^{2+} Mn ³⁺ Sc ³⁺ 4) Cu^{2+} Ni ²⁺ Ti ⁴⁺	3) an alloy of copper
 22	Of the ions $7n^{2+}$ Ni ²⁺ and Cr^{3+} (stomic	4) a silver white paint.
22.	of the folds $2h^{-1}$, Ni^{-1} and Ci^{-1} (atomic number $7n = 30$, $Ni = 28$, $Cr = 24$)	29. Which one of the following alloys contain only
	$10 1 7 2^{+} 1 1 1 1 1 2^{2+} 1 2^{3+}$	Cu and Zn?
	1) only Zn^2 is colourless and $N1^2$ and Cr^3	1) Bronze
	are coloured.	2) Brass
	3) all three are coloured	3) Gun metal 4) Bell metal
	4) only Ni^{2+} is coloured and $7n^{2+}$ and Cr^{3+} are	30. Which of the following can be used for the
	4) only 101^{-1} is coloured and $2\pi^{-1}$ and Cr^{-1} are	conversion of potassium manganate to
<u>72</u>	Which of the following is more paramagnetic?	potassium permanganate?
43.	$1 \times 1^{2+} \times 1^{3+} \times 1^{3+} \times 1^{3+}$	1) O ₃ 2) Cl ₂ 3) CO ₂ 4) All.
	$1) re^{2} + 2) re^{2} + 3) Cr^{2} + 4) Mn^{2} + $	

NEI	ET			d & f Block Elements
31.	The number of moles of KMnO ₄ that will be		decreases	
	needed to react with one mole of sulphite ion in		3) La is actually an	element of transition series
	acidic medium is:		rather than lanthani	de series
	1) 2/5 2)3/5 3) 4/5 4) 1		4) Atomic radii of Z	r and Hf are same because of
32.	In the iodometric estimation in the laboratory		lanthanide contracti	on
	which process is involved?	37.	Transuranic elemen	ts begin with
	1) $Cr_2O_7^{2-} + H^+ + I^- \rightarrow 2Cr^{3+} + I_2$		1) Np 2) Cm	3) Pu 4) U
	$I_2 + S_2 O_2^{2-} \rightarrow S_4 O_6^{2-} + I^-$	38.	Lanthanide contrac	tion is due to increase in :
			1) shielding by 4f ele	ectrons
	2) $MnO_4^- + H^+ + I^- \rightarrow Mn^{2+} + I_2$		2) atomic number	
	$I_2 + S_2O_3^- \rightarrow S_4O_6^{2-} + I^-$		3) effective nuclear of	charge
	3) $MnO_4^- + OH^- + I^- \rightarrow MnO_2 + I_2$	20	4) size of 4f orbitals	• • / /• • • • •
	$I_0 + S_0 O_2^2 - S_1 O_2^2 + I^2$	39.	Which of the follow	ving is not an actinoide?
			1) Curium	2) Californium
	4) $Cr_2O_7^{2-} + OH^- + I^- \rightarrow 2Cr^{3+} + I_2$	40	When MnO_2 is fu	sed with KOH a coloured
	$I_2 + S_2O_3^{2-} \rightarrow S_4O_6^{2-} + I^{-}$			seu with KOII, a coloureu
33.	K ₂ Cr ₂ O ₇ reacts with NH ₄ Cl in presence of		compound is form	nea. The product and its
	H ₂ SO ₄ . The product formed is :		$\frac{1}{1} K_{2} M_{2} O_{4} $ green	2) MnaQa brown
	1) chromyl chlorate with green vapour			
	2) chromous chloride with white vapour		3) Mn ₂ O ₄ , black	4) KMnO ₄ , purple
	3) chromous chloride with blue vapour	41.	Among the followi	ng, the coloured compound
	4) chromyl chloride with deep red colour		is :	
34.	Potassium dichromate can be converted into		1) CuCl	2) K3 [Cu(CN)4]
	potassium chromate using:		3) CuF ₂	4) [Cu(CH ₃ CN) ₄]BF ₄
	1) KOH 2) H ₂ SO ₄ 3) KCI 4) KNO ₂	42.	Among the following	ing pairs of ions, the lower
35.	When hydrogen peroxide is added to acidified		oxidation state in	aqueous solution is more
	potassium dichromate, a blue colour is		stable than the othe	er, in :
	produced due to formation of :		1) T <i>l</i> ⁺ , T <i>l</i> ³⁺	2) Cu ⁺ , Cu ²⁺
	1) CrO ₃ 2) Cr ₂ O ₃ 3) CrO ₅ 4) CrO ₄ ²⁻		3) Cr ²⁺ , Cr ³⁺	4) V ²⁺ , VO ²⁺
36.	Which of the following statements is not	43.	Which of the follow	ving is an amphoteric oxide?
	correct?		1) CrO ₃	
	1) La(OH) ₃ is less basic than Lu(OH) ₃		2) Cr ₂ O ₃	
	2) In lanthanide series ionic radius of Ln^{3+} ions		3) V ₂ O ₃	4) TiO
	,			

			-
NI			
	-	-	
_	_	_	-

44. For the reaction,

 $Cr_2O_7^{2-} \xrightarrow{pH=x} CrO_4^{2-} \xrightarrow{pH=y} Cr_2O_7^{2-} pH values 'x'$

and 'y' can be

- 3) 8 and 4 4) 8 and 9
- 45. Assertion : Separation of Zr and Hf is difficultReason : Zr and Hf lie in the same group of the periodic table.

1) If both assertion and reason are true and reason is a correct explanation of assertion.

2) If both assertion and reason are true but reason is not a correct explanation of assertion.

- 3) If assertion is true but reason is false.
- 4) If assertion and reason both are false.
- 46. Which is least stable in aqueous medium 1) Fe^{+2} 2) Co^{+2} 3) Ni^{+2} 4) Mn^{+2}
- 47. The radius of La³⁺ (Atomic number of La = 57) is 1.06Å. Which one of the following given values will be closest to the radius of Lu³⁺ (Atomic number of Lu = 71)?
 1) 1.60Å 2) 1.40Å 3) 1.06Å 4) 0.85Å
- 48. The "spin-only" magnetic moment [in units of Bohr magneton, (μ B) of Ni²⁺ in aqueous solution would be (atomic number of Ni = 28) 1) 2.84 2) 4.90 3) 0 4) 1.73
- 49. Identify the incorrect statement among the following.

1) The chemistry of various lanthanoids is very similar.

2) 4f and 5f orbitals are equally shielded.

3) d-block elements show irregular and erratic chemical properties among themselves.

4) La and Lu have partially filled d orbitals and no other partially filled orbitals.

50.	The correct	order o	$\mathbf{f} \in E^{\circ}_{M^{2+}/M}$	values	with negative
50.	The correct	order o	I ⊨ _{M²⁺/M}	values	with negative

sign for the four successive elements Cr, Mn, Fe and Co is

1) Mn > Cr > Fe > Co 2) Cr > Fe > Mn > Co

3) Fe > Mn > Cr > Co

4) Cr > Mn > Fe > Co

- 51. The outer electronic configuration of Lu (Atomic No : 71) is :
 - 1) $4f^3 5d^5 6s^2$ 2) $4f^8 5d^0 6s^2$

3) $4f^4 5d^4 6s^2$ 4) $4f^{14} 5d^1 6s^2$

			LI	EVEL	-2 KI					
1	2	3	4 5 6 7		7	8	9	10		
1	2	4	3	4	3	3	4	1	2	
11	12	13	14	15	16	17	18	19	20	
1	2	1	4	4	3	1	2	3	1	
21	22	23	24	25	26	27	28	29	30	
2	1	2	3	4	3	2	3	2	4	
31	32	33	34	35	36	37	38	39	40	
1	1	4	1	3	1	1	3	4	1	
41	42	43	44	45	46	47	48	49	50	
3	1	2	3	2	1	4	1	2	1	
51										
4										

NE	ET		d & f Block Elements
LE	EVEL-3(PREVIOUS YEARQUESTIONS)	6.	Lanthanides are : [AIPMT 04]
1.	Which of the following statement is not		1) 14 elements in the sixth period (At. No. 90 to
	correct? [AIPMT 01]		103) that are filling 4f sublevel.
	1) La(OH)3 is less basic than Li(OH)3.		2) 14 elements in the seventh period (At. No. 90
	2) In lanthaniode series, ionic radius of Ln^{3+} ion		to 103) that are filling 5f subshell.
	decreases.		3) 14 elements in the sixth period (At. No. 58 to
	3) La is actually an element of transition series		71) that are filling the 4f subshell.
	rather than lanthaniodes.		4) 14 elements in the seventh period (At. No. 58
	4) Atomic radius of Zn and Hf are same because		to 71) that are filling the 4f subshell.
	of lanthaniode contraction.	7.	The correct order of decreasing second
2.	The transition metals are mostly [AIPMT 01]		ionization enthalpy of Ti (22), V (23), Cr (24)
	1) diamagnetic		and Mn (25) is : [AIPMT 05]
	2) paramagnetic		1) $Cr > Mn > V > Ti$
	3) neither diamagnetic nor paramagnetic		2) V > Mn > Cr > Ti
	4) both diamagnetic and paramagnetic		3) $Mn > Cr > Ti > V$
3.	General electronic configuration of lanthanides	-	4) $Ti > V > Cr > M$
	is: [AIPMT 02]	8.	Four successive members of the first row
	1) (n-2) $f^{1-14} (n-1)s^2 p^6 d^{0-1} ns^2$		transition elements are listed below with their
	2) (n-2) $f^{10-14} (n-1)d^{0-1} ns^2$		atomic numbers. Which one of them is
	3) $(n-2) f^{0-14} (n-1) d^{10} ns^2$		expected to have the highest third ionization
	4) $(n-2) d^{0-1} (n-1) f^{1-14} ns^2$	1.1.1	enthalpy? [AIPMT 05]
	(12)(12)(11)(11)(11)(11)(11)(11)(11)(11)	101	1) Vanadium ($Z = 23$) 2) Manganese ($Z = 25$)
4.	The correct order of ionic radii of Y ³ , La ³ ,		3) Chromium (Z = 24) 4) Iron (Z = 26)
	Eu^{3+} and Lu^{3+} is: [AIPMT 03]	9.	The aqueous solution containing which one of
	1) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$		the following ions will be colourless?
	2) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$		[AIPMT 05]
	3) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$		(At. No. Sc = 21, Fe = 26, Ti = 22, Mn = 25)
5.	The basic character of the transition metal		1) Fe^{2+} 2) Mn^{2+} 3) Ti^{3+} 4) Sc^{3+}
	monoxide follows the order: [AIPMT 03]	10.	In which of the following pairs are both the
	(At. no. : Ti = 22, V = 23, Cr = 24, Fe = 26)		ions coloured in aqueous solution? [AIPMT 06]
	1) VO > CrO > TiO > FeO		(At. No. Sc= 21, Ti = 22, Ni = 28, Cu = 29, Co
	2) $CrO > VO > FeO > TiO$		= 27)
	3) $TiO > FeO > VO > CrO$		1) Sc ³⁺ , Co ²⁺ 2) Ni ²⁺ , Cu ⁺
	4) $TiO > VO > CrO > FeO$		3) Ni ²⁺ , Ti ³⁺ 4) Sc ³⁺ , Ti ³⁺
	·		

11. Identify the incorrect statement among the	16. The d-electron configurations of Cr^{2+} , Mn^{2+} ,
following. [AIPMT 2007]	Fe ²⁺ and Co ²⁺ are d^4 , d^5 , d^6 and d^7
1) Shielding power of 4f electrons is quite weak	respectively. Which one of the following will
2) There is a decrease in the radii of the atoms or	exhibit minimum paramagnetic behaviour ?
ions as one proceeds from La to Lu	(At, nos. $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 27$)
3) Lanthanoid contraction is the accumulation of	1)[Mn(H2O)] ²⁺ [AIPMT 2011]
successive shrinkages.	
4) As a result of lanthanoid contraction, the	$2)[Fe(H_2O)_6]^2$
properties of 4d series of the transition elements	3) $[Co(H_2O)_6]^{2+}$
have no similarities with the 5d series of	4) $[Cr(H_2O)_6]^{2+}$
elements.	17. Which one of the following does not correctly
12. Which of the following ions will exhibit colour	represent the correct order of the property
in aqueous solutions? [AIPMT 2010]	indicated against it? [AIPMT 2012]
1) $La^{3+}(Z = 57)$	1) Ti < V < Cr < Mn : increasing number of
2) $Ti^{3+}(Z = 22)$	oxidation states
3) $Lu^{3+} (Z = 71)$ 4) $Sc^{3+} (Z = 21)$	2) $Ti^{3+} < V^{3+} < Cr^{3+} < Mn^{3+}$: increasing
13. Which of the following ions has electronic	magnetic moment
configuration [Ar]3d ⁶ ? [AIPMT 2010]	3) Ti < V < Cr < Mn : increasing melting
1) Ni ³⁺	points
2) Mn ³⁺	4) Ti < V < Mn < Cr : increasing 2 nd ionization
3) Fe^{3+} 4) Co^{3+}	enthalpy
14. Which of the following pairs has the same size?	18. Four successive members of the first series of
1) Fe^{2+} . Ni ²⁺ [AIPMT 2010]	the transition metals are listed below. For
2)7r4+Ti4+	which one of them the standard potential
2) $7_{r}4+$ $1_{r}4+$ () $7_{r}4+$ $1_{r}4+$	$\left(E^{0}_{M^{2^{+}}/M}\right)$ value has a positive sign ?
$5) \Sigma 1^{-}$, $11 J^{-}$ $4) \Sigma 11^{-}$, $11 J^{-}$	[AIPMT 2012]
13. For the rout successive transion elements (Ci, Mn Ee and Co) the stability of ± 2 ovidation	1) Co $(Z = 27)$ 2) Ni $(Z = 28)$
state will be there in which of the following	3) Cu (Z = 29) 4) Fe (Z = 26)
order ? [AIPMT 2011]	19. The catalytic activity of transition metals and
(At. nos. $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 27$)	their compounds is ascribed mainly to :
1) $Mn > Fe > Cr > Co$	1) their magnetic behaviour [AIPMT 2012]
2) Fe > Mn > Co > Cr	2) their unfilled d-orbitals
3) Co > Mn > Fe > Cr 4) Cr > Mn > Co > Fe	3) their ability to adopt variable oxidation state
	4) their chemical reactivity
49 E- TECH ACADEMY	′ KURLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914

NEET

NE	ET				d &	t f Block Elements				
20.	Which of the following exhibit only + 3	26.	Which o	one of the	following	statements related				
	oxidation state? [AIPMT 2012]		to lanthanons is incorrect? [NEET-2016]							
	1) U 2) Th 3) Ac 4) Pa		1) Ce (+4	4) solutions	are widely	y used as oxidizing				
21.	Which of the following lanthanoid ions is		agent in volumetric analysis.							
	diamagnetic? [AIPMT 2013]		2) Europ	ium shows	+2 oxidati	ion state.				
	(At nos. Ce = 58, Sm = 62, Eu = 63, Yb = 70)		3) The ba	asicity decr	eases as the	e ionic radius				
	1) Sm ²⁺ 2) Eu ²⁺ 3) Yb ²⁺ 4) Ce ²⁺		decreases	s from Pr to	o Lu					
22.	Which of the following statements about the		4) All th	he lanthan	ous are m	uch more reactive				
	interstitial compounds is incorrect?		than alur	minium						
	1) They are chemically reactive. [AIPMT 2013]	27.	The reas	on for grea	ater range	of oxidation states				
	2) They are much harder than the pure metal.		in actino	oids is attri	buted to :	[NEET -2017]				
	3) They have higher melting points than the pure		1) The ra	adioactive n	ature of ac	ctinoids				
	metal.		2) Actinoid contraction							
	4) They retain metallic conductivity.		3) 5f, 6	6d and 7s	s levels h	aving comparable				
23.	Magnetic moment 2.83 BM is given by which		energies							
	of the following ions? [AIPMT 2014]	-•	4) 4f and	5d levels b	eing close :	in energies				
	(At.nos.Ti=22, Cr=24, Mn=25, Ni=28)	28.	Name t	he gas th	at can re	eadily decolourise				
	1) Ti ³⁺ 2)Ni ²⁺ 3) Cr ³⁺ 4) Mn ²⁺		acidified	KMnO ₄ s	olution:	[NEET 2017]				
24.	Which of the following processes does not		1) CO ₂	2) SO ₂	3) NO ₂	4) P ₂ O ₅				
	involve oxidation of iron? [AIPMT-1 2015]	29.	Match th	he might i	ons given	in Column I with				
	1) Decolourization of blue CuSO ₄ solution by		the spin magnetic moments of the ions give							
	iron	1011	Column	II and assi	gn the corr	rect code :				
	2) Formation of Fe (CO)5 from Fe		Column	I	Column	II[NEET 2018]				
	3) Liberation of H_2 from steam by iron at high		(a) Co ³⁺		(i) √8 B.	M.				
	temperature		(b) Cr ³⁺		(ii) √35 I	3.M.				
	4) Rusting of iron sheets		(c) Fe ³⁺		(iii) √3 E	3.M.				
25.	Gadolinium belongs to 4f series. It's atomic		(d) Ni ²⁺		(iv) √24 I	B.M.				
	number is 64. Which of the following is the				(v) √15 E	3.M.				
	correct electronic configuration of gadolinium?		a	b	С	d				
	1) [Xe] 4f ⁸ 6d ² [AIPMT-2 2015]	1)	iv	v	ii	i				
	2) $[Xe] 4f^{9} 5s^{1}$	2)	iii	v	Ι	ii				
	3) [Xe] $M_{1}^{2} 5dl 6d^{2}$	3)	iv	Ι	ii	iii				
	$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}$	4)	Ι	ii	iii	iv				
	4) [AC] 45 32 052									

- - --

d & f Block Elements										
35.	Zr (Z	(=40)	and	Hf (Z	2 =72)) have	e simi	lar at	omic	
	and i	onic 1	adii k	oecaus	se of :	[]	NEET	Г - 20 2	1]	
	1) bel	ongin	ig to s	ame g	group					
2) diagonal relationship										
	3) lanthanoid contraction									
	4) ha	ving s	imila	r chen	nical	prope	rties			
36.	36. Gadolinium has a low value of third ioni								ation	
	entha	ılpy b	ecaus	e of		[]	NEET	Г - 20 2	2]	
	1) sm	all siz	ze							
	2) hig	gh exc	hange	e enth	alpy					
	3) hig	gh eleo	ctrone	gativi	ity					
	4) hig	gh bas	ic cha	iracte	r					
37.	In th	ne ne	eutral	or	faintl	y all	caline	med	lium,	
	KMnO ₄ oxidises iodide into iodate. The change									
	in oxidation state of manganese in this reaction								ction	
-	is fro	m				[]	NEET	Г - 20 2	2]	
> •	1) +7 to +4 2) +6 to +4									
	3) +7 to +3 3) +6 to +5 38. The stability of Cu^{2+} is more than Cu^{+} salts in									
38.										
	aque	ous so	olutio	n due	to –	Į.	NEE	l - 202	3]	
ACA.	1) en		or at	omiza	ation.					
	2) ny	uratio		igy.	nth a le					
	(3) Sec	t ioni	onisa	uon e	alnu	у.				
	4) 1113		Sation							
1	2	2			-3 KI	2 Y	0	0	10	
	2	3	4 1	5	0 2	1	ð	9	2	
	2 12	12	1	4) 16	17	2 10	4	20	
	12	15	14	15	10	17	10	19	20	
4	2	4 22	21	25	3 26	27 27	20	20	30	
21	1	23	24	23	20	21	20	49 1	30 2	
31	32	2	34	35	36	37	38	30	ے 40	
2	3	2	4	3	2	1	2	57	10	
	5		I	5	2	_	2			
	35. 36. 37. 38. 38. 31 2	35. Zr (Z and i 1) bel 2) dia 3) lan 4) ha 36. Gado entha 1) sm 2) hig 3) hig 4) hig 37. In the 37. In the KMm in ox is fro 1) +7 3) +7 38. The s aqueo 1) ent 2) hyd 3) sec 4) first 1 2 1 2 1 2 1 2 1 2 3) sec 3 4 2 2 3 1 2 3 1 31 32 2 3	35. Zr (Z =40) and ionic r 1) belongin 2) diagonal 3) lanthand 4) having s 36. Gadolinius enthalpy b 1) small siz 2) high exc 3) high eled 4) high bas 37. In the ne KMnO4 ox in oxidation is from 1) +7 to +4 3) +7 to +3 38. The stability aqueous so 1) enthalpy 2) hydration 3) second i 4) first ioni 1 2 3 1 2 3 3 1 2 3	35.Zr (Z =40) and and ionic radii H 1) belonging to s 2) diagonal relat 3) lanthanoid co 4) having similar 36.36.Gadolinium has enthalpy becaus 1) small size 2) high exchange 3) high electrone 4) high basic cha 37.37.In the neutral KMnO₄ oxidise in oxidation station 3) +7 to +4 3) +7 to +4 3) +7 to +338.The stability of aqueous solution 1) enthalpy of at 2) hydration ene 3) second ionisation 4) first ionisation 3) second ionisation 4) first ionisation11234121123412341234	35. Zr (Z =40) and Hf (Z and ionic radii becaus 1) belonging to same g 2) diagonal relationsh 3) lanthanoid contract 4) having similar chem 36. Gadolinium has a low enthalpy because of 1) small size 2) high exchange enth 3) high electronegative 4) high basic character 37. In the neutral or KMnO4 oxidises iodi in oxidation state of 3) +7 to +4 3) +7 to +4 38. The stability of Cu ²⁺ aqueous solution due 1) enthalpy of atomiza 2) hydration energy. 3) second ionisation end 4) first ionisation end <br< td=""><td>35. Zr (Z =40) and Hf (Z =72) and ionic radii because of a 1) belonging to same group 2) diagonal relationship 3) lanthanoid contraction 4) having similar chemical p 36. Gadolinium has a low val- enthalpy because of 1) small size 2) high exchange enthalpy 3) high electronegativity 4) high basic character 37. In the neutral or fainth KMnO₄ oxidises iodide into in oxidation state of mang is from 1) +7 to +4 2) +6 3) +7 to +3 4) +6 38. The stability of Cu²⁺ is m aqueous solution due to – 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. EEVEL-3 KH1 2 3 4 5 61 2 1 1 4 311 12 13 14 15 164 2 4 3 1 321 22 23 24 25 263 1 2 2 3 331 32 33 34 35 362 3 2 4 3 2</td><td>d & f 35. Zr (Z =40) and Hf (Z =72) have and ionic radii because of : [1] 1) belonging to same group 2) diagonal relationship 3) lanthanoid contraction 4) having similar chemical proper 36. Gadolinium has a low value of enthalpy because of [1] 1) small size 2) high exchange enthalpy 3) high electronegativity 4) high basic character 37. In the neutral or faintly all KMnO₄ oxidises iodide into iod in oxidation state of manganese is from [1] 1) +7 to +4 2) hydration energy. 3) second ionisation enthalpy. A) +6 to +5 38. The stability of Cu²⁺ is more that aqueous solution due to – [1] 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. 4) for to 1 2 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. <td colspa<="" td=""><td>d & f Block35. Zr (Z =40) and Hf (Z =72) have similar and ionic radii because of : [NEET]1) belonging to same group2) diagonal relationship3) lanthanoid contraction4) having similar chemical properties36. Gadolinium has a low value of third enthalpy because of [NEET]1) small size2) high exchange enthalpy3) high electronegativity4) high basic character37. In the neutral or faintly alkalineKMnO4 oxidises iodide into iodate. The in oxidation state of manganese in the is from [NEET]1) +7 to +42) +6 to +43) +7 to +34) +6 to +538. The stability of Cu²⁺ is more than CC aqueous solution due to - [NEET]1) enthalpy of atomization.2) hydration energy.3) second ionisation enthalpy.4) first ionisation enthalpy.4) first ionisation enthalpy.4) first ionisation enthalpy.4) a 13424312111212131332422526262728312232323233424343434343434353637<</td><td>d & f Block Elem 35. Zr (Z =40) and Hf (Z =72) have similar at and ionic radii because of : [NEET- 202 1) belonging to same group 2) diagonal relationship 3) lanthanoid contraction 4) having similar chemical properties 36. Gadolinium has a low value of third ionis. enthalpy because of [NEET- 202 1) small size 2) high exchange enthalpy 3) high electronegativity 4) high basic character 37. In the neutral or faintly alkaline med INEET- 202 1) +7 to +4 3) +7 to +3 4) +6 to +4 3) +7 to +3 A) +6 to +5 38. The stability of Cu²⁺ is more than Cu⁺ sat aqueous solution due to - [NEET- 202 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. 4 1 1 2 3 2) high exchange inthi fordion at this reat is from [NEET- 202</td></td></td></br<>	35. Zr (Z =40) and Hf (Z =72) and ionic radii because of a 1) belonging to same group 2) diagonal relationship 3) lanthanoid contraction 4) having similar chemical p 36. Gadolinium has a low val- enthalpy because of 1) small size 2) high exchange enthalpy 3) high electronegativity 4) high basic character 37. In the neutral or fainth KMnO ₄ oxidises iodide into in oxidation state of mang is from 1) +7 to +4 2) +6 3) +7 to +3 4) +6 38. The stability of Cu ²⁺ is m aqueous solution due to – 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. EEVEL-3 KH1 2 3 4 5 61 2 1 1 4 311 12 13 14 15 164 2 4 3 1 321 22 23 24 25 263 1 2 2 3 331 32 33 34 35 362 3 2 4 3 2	d & f 35. Zr (Z =40) and Hf (Z =72) have and ionic radii because of : [1] 1) belonging to same group 2) diagonal relationship 3) lanthanoid contraction 4) having similar chemical proper 36. Gadolinium has a low value of enthalpy because of [1] 1) small size 2) high exchange enthalpy 3) high electronegativity 4) high basic character 37. In the neutral or faintly all KMnO ₄ oxidises iodide into iod in oxidation state of manganese is from [1] 1) +7 to +4 2) hydration energy. 3) second ionisation enthalpy. A) +6 to +5 38. The stability of Cu ²⁺ is more that aqueous solution due to – [1] 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. 4) for to 1 2 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. <td colspa<="" td=""><td>d & f Block35. Zr (Z =40) and Hf (Z =72) have similar and ionic radii because of : [NEET]1) belonging to same group2) diagonal relationship3) lanthanoid contraction4) having similar chemical properties36. Gadolinium has a low value of third enthalpy because of [NEET]1) small size2) high exchange enthalpy3) high electronegativity4) high basic character37. In the neutral or faintly alkalineKMnO4 oxidises iodide into iodate. The in oxidation state of manganese in the is from [NEET]1) +7 to +42) +6 to +43) +7 to +34) +6 to +538. The stability of Cu²⁺ is more than CC aqueous solution due to - [NEET]1) enthalpy of atomization.2) hydration energy.3) second ionisation enthalpy.4) first ionisation enthalpy.4) first ionisation enthalpy.4) first ionisation enthalpy.4) a 13424312111212131332422526262728312232323233424343434343434353637<</td><td>d & f Block Elem 35. Zr (Z =40) and Hf (Z =72) have similar at and ionic radii because of : [NEET- 202 1) belonging to same group 2) diagonal relationship 3) lanthanoid contraction 4) having similar chemical properties 36. Gadolinium has a low value of third ionis. enthalpy because of [NEET- 202 1) small size 2) high exchange enthalpy 3) high electronegativity 4) high basic character 37. In the neutral or faintly alkaline med INEET- 202 1) +7 to +4 3) +7 to +3 4) +6 to +4 3) +7 to +3 A) +6 to +5 38. The stability of Cu²⁺ is more than Cu⁺ sat aqueous solution due to - [NEET- 202 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. 4 1 1 2 3 2) high exchange inthi fordion at this reat is from [NEET- 202</td></td>	<td>d & f Block35. Zr (Z =40) and Hf (Z =72) have similar and ionic radii because of : [NEET]1) belonging to same group2) diagonal relationship3) lanthanoid contraction4) having similar chemical properties36. Gadolinium has a low value of third enthalpy because of [NEET]1) small size2) high exchange enthalpy3) high electronegativity4) high basic character37. In the neutral or faintly alkalineKMnO4 oxidises iodide into iodate. The in oxidation state of manganese in the is from [NEET]1) +7 to +42) +6 to +43) +7 to +34) +6 to +538. The stability of Cu²⁺ is more than CC aqueous solution due to - [NEET]1) enthalpy of atomization.2) hydration energy.3) second ionisation enthalpy.4) first ionisation enthalpy.4) first ionisation enthalpy.4) first ionisation enthalpy.4) a 13424312111212131332422526262728312232323233424343434343434353637<</td> <td>d & f Block Elem 35. Zr (Z =40) and Hf (Z =72) have similar at and ionic radii because of : [NEET- 202 1) belonging to same group 2) diagonal relationship 3) lanthanoid contraction 4) having similar chemical properties 36. Gadolinium has a low value of third ionis. enthalpy because of [NEET- 202 1) small size 2) high exchange enthalpy 3) high electronegativity 4) high basic character 37. In the neutral or faintly alkaline med INEET- 202 1) +7 to +4 3) +7 to +3 4) +6 to +4 3) +7 to +3 A) +6 to +5 38. The stability of Cu²⁺ is more than Cu⁺ sat aqueous solution due to - [NEET- 202 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. 4 1 1 2 3 2) high exchange inthi fordion at this reat is from [NEET- 202</td>	d & f Block35. Zr (Z =40) and Hf (Z =72) have similar and ionic radii because of : [NEET]1) belonging to same group2) diagonal relationship3) lanthanoid contraction4) having similar chemical properties36. Gadolinium has a low value of third enthalpy because of [NEET]1) small size2) high exchange enthalpy3) high electronegativity4) high basic character37. In the neutral or faintly alkalineKMnO4 oxidises iodide into iodate. The in oxidation state of manganese in the is from [NEET]1) +7 to +42) +6 to +43) +7 to +34) +6 to +538. The stability of Cu ²⁺ is more than CC aqueous solution due to - [NEET]1) enthalpy of atomization.2) hydration energy.3) second ionisation enthalpy.4) first ionisation enthalpy.4) first ionisation enthalpy.4) first ionisation enthalpy.4) a 13424312111212131332422526262728312232323233424343434343434353637<	d & f Block Elem 35. Zr (Z =40) and Hf (Z =72) have similar at and ionic radii because of : [NEET- 202 1) belonging to same group 2) diagonal relationship 3) lanthanoid contraction 4) having similar chemical properties 36. Gadolinium has a low value of third ionis. enthalpy because of [NEET- 202 1) small size 2) high exchange enthalpy 3) high electronegativity 4) high basic character 37. In the neutral or faintly alkaline med INEET- 202 1) +7 to +4 3) +7 to +3 4) +6 to +4 3) +7 to +3 A) +6 to +5 38. The stability of Cu ²⁺ is more than Cu ⁺ sat aqueous solution due to - [NEET- 202 1) enthalpy of atomization. 2) hydration energy. 3) second ionisation enthalpy. 4 1 1 2 3 2) high exchange inthi fordion at this reat is from [NEET- 202

E-TECH ACADEMY Study Center

FREE WIFI

DOUBT SUPPORT

SEPARATE DESK

Add:- White House,Batatawala Building,Buddha Colony, Kurla West, Mumbai 400070. MOB:. 9833905914 / 8928877808